简介:本文应用具有等式约束的非线性规划的最优解的二阶充分条件。导出线性等式的约束二次规划的最优解的矩阵表达式。这一算法也可应用于一般的非线性规划的迭代算法中。
简介:本文利用构造生成函数的方法给出常系数线性非齐次递推关系:h(n)=a1h(n-1)+…+akh(n-k)+f(n)解的-般公式及其应用,其中f(x)为一般函数.本文的方法是对文献[1][2]中特殊形式f(x)=βnP1(n)求解的一种推广,此方法更具有一般性.
简介:讨论Banach空间X上二阶抽象微分方程d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X的不适定情况,这里A是X上的闭算子;引进空间Y(A,k),即使得二阶抽象微分方程有次弱解v(t,x),且满足esssup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞的x∈X的全体,及空间H(A,ω),即使得二阶抽象微分方程有次弱解v(t,x),且满足的x∈X的全体.证明了如下结论:Y(A,k)和H(A,ω)均为Banach空间,且Y(A,k)和H(A,ω)均连续嵌入X;A在Y(A,k)上的限制算子A|Y(A,k)生成一个一次积分Cosine算子函数{(t))t≥0,满足limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,任意t≥0;A在H(A,ω)上的限制算子A|H(A,ω)生成一个一次积分Cosine算子函数{C(t)}t≥0,满足limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,任意t≥0.