简介:为加强海峡两岸珠算科技交流,增进友谊,发展两岸关系,为促进祖国早日实现和平统一做贡献,由中国珠算协会和台湾省商业会共同举办的第九届海峡两岸珠算通讯比赛活动,从5月14日上午统一开赛,现已圆满结束。这项心系两岸同胞深情厚谊的活动是从1991年起,每年5月同一时间在两岸举行。这项颇有意义的比赛活动吸引着两岸广大珠算爱好者,今年参赛人数达292,467人。比赛项目为:加减算、乘算和除算三项,各项比赛成绩比往年突出。至此,九届参赛总人数累计超过346万人次(不包括台湾地区参赛人数)。这次参赛的有33个赛区、占44个赛区总数的75%,海峡两岸珠算通讯赛获特等奖组织推广奖的赛区7名、一等奖5名、二等奖2名、三等奖7名,获奖面占参赛总数的64%。根据这次通讯赛规定:获得各大赛区前6名成绩的18个省、市可派1名代表,作为中珠协代表团成员参加九月在河北省举办的第十届海峡两岸珠算学术交流大会,并接受颁奖。全国近30万人参加两岸珠算比赛——第九届海峡两岸珠算通讯赛揭晓!《珠算报》@高平
简介:考察了一类非线性一维p-Laplace方程正解的多解性.主要结论表明,即使非线性项在0点和无穷远处不满足通常的增长条件,该方程仍可能有两个正解.
简介:设X是复Banch空间,M(t,u)是以t为参数的满足某些通常条件的Φ-函数.我们证明了;(i)Musielak-Orlicz空间L_M(X)具有解析UMD性质当且仅当X具有;(ii)L_M(X)具有解析RN性质当且仅当X具有.