学科分类
/ 25
500 个结果
  • 简介:根据这个广义Boussineq方程的特点,利用辅助方程法构造了一个非线性高次常微分辅助方程,再通过映射的方法,由辅助方程的解获得了广义Boussineq方程的各种精确解的解析表达式.

  • 标签: 广义Boussineq方程 精确解 辅助方程法
  • 简介:设D是无平方因子正整数.本文证明了:方程x!=D=y2仅有有限多组正整数解(x,y),而且这些解都满足x<2D.

  • 标签: 高次DIOPHANTINE方程 阶乘 平方
  • 简介:modifiedKorteweg-deVries(mKdV)方程是一个精典的孤子方程。利用行波变换法把广义mKdV方程转化为常微分后,再利用降阶法和初等积分法求出了广义mKdV方程的一系列的精确行波解。

  • 标签: 广义mKdV方程 精确解 行波变换法 降阶法
  • 简介:利用初等方法,研究与广义欧拉函数有关的方程φ2(n)=2^ω(n)、φ2(φ2(n))=22^ω(n)的可解性,并获得方程的所有正整数解.

  • 标签: 广义欧拉函数 方程 正整数解
  • 简介:摘要:在自然科学的许多领域中,很多现象是用抛物方程描述的.因此,求解抛物偏微分方程问题具有重要的理论意义和应用价值.文章讨论了一类抛物方程非齐次边值问题的解法,先利用变量替换法,将这类抛物方程非齐次边值问题转化为齐次边值问题,然后再运用Lax—Milgram定理的推论证明了其解存在唯一性.

  • 标签: 非齐次边值问题 能量方法 变量替换
  • 简介:根据平面动力系统的分支理论,研究了广义Fisher方程在平衡点是鞍点或结点时,讨论了它的抛物线解的存在性.由抛物线解的存在性,在不同的参数条件下,得到了方程扭波解的精确参数表示.

  • 标签: 广义FISHER方程 抛物线解 扭波解
  • 简介:利用半群算子e^-t(-△)^a和L^2模的性质,讨论广义不可压纳维-斯托克斯方程解的衰减速率;通过不完全采用傅里叶分析的方法和|▽u(t)|L^2的粗略估计,在H^1(R^3)空间中得到方程较好的衰减估计。

  • 标签: 纳维-斯托克斯方程 半群算子e^-t(-△)^a 衰减性
  • 简介:研究了一类新的广义Emden-Fowler微分方程,运用广义Riccati变换和积分平均技巧,得到了新的振动准则,推广和改进了一些已知的结果.

  • 标签: EMDEN-FOWLER方程 RICCATI变换 振动准则
  • 简介:考虑六阶微分方程第二广义谱的含权上界估计,利用算子谱理论、分部积分、测试函数、广义Rayleigh定理和不等式估计等方法,获得了用第一个谱来估计第二个谱的上界的不等式,其估计系数与区间的几何度量无关,其结论是文献[1-3]的进一步推广.

  • 标签: 微分方程 广义谱 特征函数 Schwartz不等式 上界估计
  • 简介:讨论Dirac符号在经典力学中的应用,给出一种用广义坐标和Dirac符号表述的动力学方程,并举例说明该方程的广泛应用.

  • 标签: 动力学 质点系统 广义坐标
  • 简介:摘要 : 本文主要讨论了高阶 kirchhoff方程的整体吸引子,对于低阶 kirchhoff方程的整体吸引子,已有相当的研究 .本文在低阶型 kirchhoff方程研究的基础上,研究了一类广义非线性高阶 kirchhoff型方程的整体吸引子 .首先,在对高阶 kirchhoff方程中的非线性项做出合理的假设下,得到方程的整体解和吸收集,然后由整体吸引子的判定定理 (渐近紧性 ),得到此类高阶 kirchhoff方程的整体吸引子 .

  • 标签:
  • 简介:主要运用Mawhin重合度拓展定理研究了一类广义平均曲率Rayleigh方程(x'(t)/(1+x'2(t))+f(x'(t))+g(t,x(t))=e(t)周期解存在性与唯一性问题,得到了周期解存在性与唯一性的相关新结果。

  • 标签: 广义平均曲率 RAYLEIGH方程 周期解 重合度
  • 简介:根据特征多项式,实数域上亏损矩阵的广义特征矩阵可用固定线性方程组求,但这个固定线性方程组的未知量个数多于方程个数,从广义若当链中选取部分等式补充到线性方程组,可使广义特征矩阵唯一确定。

  • 标签: 特征多项式 亏损矩阵 广义特征矩阵 实数域 若当标准型
  • 简介:

  • 标签:
  • 简介:文讨论了循环矩阵的对角化问题。本文讨论推广了的一类循环矩阵——广义循环矩阵。首先确定了复数域上由U确定的一类广义循环矩阵所组成的空间的最大维数;然后给出了复广义循环矩阵与对角阵西相似的充要条件。

  • 标签: 广义循环矩阵 基本广义循环矩阵 特征值 特征向量 酉相似
  • 简介:结合随机规划和广义目标规划,提出了几种具有随机参数的广义目标规划模型──随机广义目标规划,并对其算法进行了探讨.最后,通过一个工业问题说明该方法的应用.

  • 标签: 广义目标规划 随机规划 随机广义目标规划