简介:在一类高维映射中实现了由Iooss等人提出的映射不变圈的算法.首先分析了不变圈的分岔条件,然后通过Fredholm择一方法分析了在计算不变圈过程中出现的一类方程解的存在性,再根据不变圈上映射到自身的不变性,通过分析振幅各阶项的系数,最终在一高维映射中实现了不变圈的计算。
简介:在Birkhoff框架下,采用离散变分方法研究了非Hamilton系统一Hojman—Urrutia方程的数值解法,并通过和传统的Runge—Kutta方法进行比较,说明了在Birkhoff框架下研究这类不具有简单辛结构的非Hamilton系统可以得到更可靠和精确的数值结果.
简介:提出了一种快速计算变截面铁木辛柯梁横向振动特性的方法.基于铁木辛柯梁理论建立的变截面梁的横向振动方程,其梁的截面参数如有效剪切面积、密度、弯曲刚度、转动惯量等沿梁轴线连续或非连续变化;首先将变截面梁等效为多段均匀阶梯梁;然后基于相邻两段连接处的位移(位移、转角)和力(弯矩、剪力)连续条件,建立相邻两段模态函数间相互关系,并递推出首段段与末段模态函数相互关系,利用边界条件得到相应特征方程,使用Newton—Raphson方法计算其固有频率;最后针对梁常见边界条件,得到计算变截面铁木辛柯梁横向振动固有频率特征方程的具体形式.用该方法计算-变截面梁在常见边界条件下前三阶固有频率.将计算结果同有限元计算结果进行比较,验证所提方法的有效性.然后与欧拉-伯努利梁计算结果比较,验证了本文方法求解短粗梁固有频率具有更好适用性.
简介:在外弹道数据处理中,奇异点处理、特征点求取与随机误差削弱都是精度估计的关键环节.本文首先利用小波变换在处理奇异点、特征点、噪声消除方面的优势,对观测数据进行基于小波变换的分解、融合、重构处理,剔除奇异点,查找特征点,削弱随机误差.其次利用节点自由分布B样条描述导弹运动轨迹,使该弹道确定方法转化为关于求解导弹轨道样条表示参数和测量系统误差的多模融合的非线性优化问题,采用非线性最优化方法,进而得到待估参数的最优估计,完成弹道的最佳逼近.仿真结果表明,该技术应用在奇异点处理、特征点提取与随机误差削弱方面效果较好,多模融合算法能减少计算量,且能切实提高参数估计精度.
简介:基于经典的Magnus级数方法提出了一个简单有效的四阶近似积分格式,用于求解一般非线性动力学系统.它是一种几何积分方法,能保持精确解的许多定性性质,并且该方法只包含二个或三个指数矩阵的乘积,避免了通常的Magnus级数方法涉及的复杂的交换子运算.数值算例显示该方法是有效的。
简介:研究了Lufie广义系统基于状态观测器的控制器设计问题.通过使用Lyapunov稳定性理论,线性矩阵不等式方法,分别给出了状态反馈控制器和观测器的设计方法,并建立了分离原理,进而得到了基于观测器的控制器设计方法.所得结论对广义系统理论本身的发展和实际应用都有非常重要的意义.最后给出了仿真实例.
简介:针对大展弦比机翼水平弯曲模态参与耦合颤振问题,首先用考虑几何非线性的颤振分析方法研究了某大展弦比机翼的颤振特性,结果表明水平一弯模态参与耦合降低了机翼传统模式的线性颤振速度;然后研究了复合材料的铺层主刚度方向角对机翼非线性振动特性和颤振特性的影响规律,提出了大展弦比机翼非线性颤振剪裁设计的新方法.结果表明主刚度方向角的变化主要引起了水平一弯模态振型的改变,一般表现为主刚度方向角从机翼后梁向后缘偏转,该阶模态的相对扭转振型节线位置向前缘移动;反之,该节线位置后移.进一步非线性颤振分析,发现水平一弯模态振型的变化引起了该阶模态参与耦合颤振速度的明显改变,主要表现为该颤振型的颤振速度随该阶模态的相对扭转振型节线位置前移量的增加而增大.通过两个算例验证了结论的正确性.