简介:多尺度几何分析中的Contourlet变换可以实现灵活的多分辨、多方向图像表示,但是由于不具有平移不变性,在图像去噪中容易产生伪吉布斯现象,本文应用具有平移不变性且能有效表示图像纹理信息的平稳Contourlet变换,提出了软硬阈值结合的去噪法.试验结果表明该方法有效提高去噪声后图像的PSNR,有效保存图像纹理信息以及更好的视觉效果.
简介:国内外许多学者认为,数学是有别于自然科学和社会科学的独立科学形式。本文主要参考《古今数学思想》[1]和《数学史教程》[2],从历史与哲学的角度探讨数学成为独立科学形式的主要根源。通过考证发现,数学成为独立科学形式的主要根源在于历史上三次重大的哲学思潮,它们导致了纯粹数学研究与背景问题(学科)研究的一次融合和三次重大分离,即:(1)毕达哥拉斯的'万物皆数'的哲学思想导致了第一次分离,形成古希腊抽象数学体系;(2)随着'文艺复兴'时期古希腊文明的复苏,数学和背景问题(学科)研究开始强大融合,并逐步被笛卡尔、伽利略以及后来的牛顿和莱布尼茨的'科学的本质是数学'的哲学思想所主宰,导致了
简介:对算子T的Bishop性质(β)进行“局部化”,得到T的新的集值函数A(T),E1(T),E2(T),C1(T),Cx(T),并讨论它们之间的相互关系以及它们与T的谱结构的关系.借助这些新概念我们得到算子的可分解性与次可分解性的新的充要条件和谱特征.
简介:利用对称内积的Schmidt正交化方法证明了各阶主子式不为零对称阵的LDLT分解.引入两个向量组关于弱内积广义正交的概念,并构造了将两组含相同个数向量的线性无关组化为广义正交组的广义Schmidt正交化方法.最后应用这一方法证明了各阶主子式不为零矩阵的LDU分解及一些相关的结果.
简介:基于Schmidt正交化过程获得了一种计算逆矩阵的新方法.对于可逆矩阵A,有Q=MA,其中Q是酉矩阵,M是下三角矩阵.本文直接从Schmidt规范正交化出发,获得下三角矩阵M的计算公式,从而求得逆矩阵A-1=QHM=AHMTM.