简介:在Zeng等人对有界变差函数f的Durrmeyer-Bézier算子在区间(0,1)上收敛于(1/(α+1))f(x+)+(α/(α+1))f(x-)的收敛阶进行研究的基础上,利用基函数的概率性质等方法,对其所给的Durrmeyer-Bézier算子收敛阶估计结果作进一步的改进,得到其收敛阶的精确估计.
简介:MakinguseoftheZ2×Z2symmetry,wecouldstudythestructurenearmultipleS-treakingturningpoints.Inparticular,weshowthatthereexisttwokindsofsingularpointpaththroughdoubleSbreakingturningpointsandtripleSbieakingturningpoints,onetsquadraticturningporntpathandoneisquadraticpitchforkbifurcationpointpath.SomesimpleregularextendedsystemstocornputedoubleandtripleS-breakingturningpointsareproposed.Numericalexamplesarealsogreen
简介:AgraphGiscalledchromatic-choosableifitschoicenumberisequaltoitschromaticnumber,namelych(G)=χ(G).Ohba’sconjecturestatesthateverygraphGwith2χ(G)+1orfewerverticesischromaticchoosable.ItisclearthatOhba’sconjectureistrueifandonlyifitistrueforcompletemultipartitegraphs.Recently,Kostochka,StiebitzandWoodallshowedthatOhba’sconjectureholdsforcompletemultipartitegraphswithpartitesizeatmostfive.Butthecompletemultipartitegraphswithnorestrictionontheirpartitesize,forwhichOhba’sconjecturehasbeenverifiedarenothingmorethanthegraphsKt+3,2*(k-t-1),1*tbyEnotomoetal.,andKt+2,3,2*(k-t-2),1*tfort≤4byShenetal..Inthispaper,usingtheconceptoff-choosable(orL0-size-choosable)ofgraphs,weshowthatOhba’sconjectureisalsotrueforthegraphsKt+2,3,2*(k-t-2),1*twhent≥5.Thus,Ohba’sconjectureistrueforgraphsKt+2,3,2*(k-t-2),1*tforallintegerst≥1.
简介:LiuandYangavethedegreeconditionforabalancedbipartitegraphG=(V_1,V_2;E)tohavekvertex-disjointquadrilateralscontaininganygivenkindependentedgese_1,...,e_kofG,respectively.Theyalsoconjecturedthatforanykindependentedgese_1,...,e_kofG,Ghasa2-factorwithkcyclesC_1,C_2,…,C_kwithrespectto{e_1,e_2,...,e_k}suchthatk-1ofthemarequadrilaterals.Inthispaper,weprovethisconjecture.
简介:Inthispaper,weuseamethodinordertofindexactexplicittravelingsolutionsinthesubspaceofthephasespaceforCH2equations.Thekeyideaisremovingacoupledrelationforthegivensystemsothatthenewsystemscanbesolved.Theexistenceofsolitarywavesolutionsisobtained.Itisshownthatbifurcationtheoryofdynamicalsystemsprovidesapowerfulmathematicaltoolforsolvingagreatmanynonlinearpartialdifferentialequationsinmathematicalphysics.
简介:Wetackletheproblemofconstructing2DcentroidalVoronoitessellationswithconstraintsthroughanefficientandrobustconstructionofboundedVoronoidiagrams,thepseudo-dualoftheconstrainedDelaunaytriangulation.WeexploitthefactthatthecellsoftheboundedVoronoidiagramcanbeobtainedbyclippingtheordinaryonesagainsttheconstrainedDelaunayedges.Theclippingitselfisefficientlycomputedbyidentifyingforeachconstrainededgethe(connected)setoftriangleswhosedualVoronoiverticesarehiddenbytheconstraint.TheresultingconstructionisamenabletoLloydrelaxationsoastoobtainacentroidaltessellationwithconstraints.
简介:ConsiderL2-projectionuhofuton-degreefiniteelementspaceonone-dimensionaluniformgrids.TwodifferentclassesoftheorthogonalexpansioninanelementforconstructingasuperclosetofunctionuhareproposedandthensuperconvergenceforbothuhandDuhareproved.Whennisoddandnoboundaryconditionsareprescribed,thenuhisofsuperconvergenceatn+1orderGausspointsGn+1ineachelement.Whennisevenandfunctionvaluesontheboundaryareprescribed,thenuhisofsuperconvergenceatn+1orderpointsZn+1ineachelement.Iftheotherboundaryconditionsaregiven,thentheconclusionsarevalidinallelementsthatitsdistancefromtheboundary≥ch|lnh|.Theaboveconclusionsarealsovalid.forn-dergreerectangularelementQ1(n).
简介:系统地研究了全平面收敛的B-值随机Difichlet级数的增长性,得到了在一定条件下,B-值随机Dirichlet级数在收敛平面上的增长(下)级几乎处处等于某Dirichlet级数的增长(下)级还得到了它们与指数和系数的关系式.
简介:Uponusingthedenotativetheoremofanti-HermitiangeneralizedHamiltonianmatrices,wesolveeffectivelytheleast-squaresproblemmin‖AX-B‖overanti-HermitiangeneralizedHamiltonianmatrices.WederivesomenecessaryandsufficientconditionsforsolvabilityoftheproblemandanexpressionforgeneralsolutionofthematrixequationAX=B.Inaddition,wealsoobtaintheexpressionforthesolutionofarelevantoptimalapproximateproblem.