简介:对于有界变差函数f的Durrmeyer-Bézier算子Dn,a(f,x)在区间(0,1)上收敛于:1/α+1f(x+)+α/α+1f(x-)的收敛阶进行估计.在Zeng和Chen关于Dn,a(f,x)算子的收敛阶研究的基础上,对其所估计的结果作进一步的改进,得到更精确的系数估计,并且所得到的系数估计关于n和x是一致有界的,改进了原估计非一致有界的不足.
简介:运用概率型算子的概率性质,研究了局部有界函数厂的Integral型Lupas—Bêzier算子收敛阶,得到更精确的估计。其研究对于Bêzier型算子逼近的研究工作,以及提高运用Bêzier法的计算机辅助设计几何造型的精度的估计有重要意义。
简介:在Zeng等人对有界变差函数f的Durrmeyer-Bézier算子在区间(0,1)上收敛于(1/(α+1))f(x+)+(α/(α+1))f(x-)的收敛阶进行研究的基础上,利用基函数的概率性质等方法,对其所给的Durrmeyer-Bézier算子收敛阶估计结果作进一步的改进,得到其收敛阶的精确估计.
简介:我们考虑二阶方程Dirichlet边值问题混合元的超收敛.在正则矩形网格上,采用一阶Raviart-Thomas混合元空间,对有限元解经后处理后,其收敛于精确解的速度从二阶提高到四阶.
简介:摘要现在,我国高中数学的单元教学设计最常用的教学手段就是把课堂的注意力集中到具体的课堂上来,然后研究这一节课的教学过程。这种收敛式的教学方法只能在细节上对教学进行设计,并不能从整体上宏观地掌握教材的内容。这种做法还会使学生不能整体掌握教材,影响学生的学习成绩。所以,在高中数学的教学设计中要多培养学生的发散性思维。本文从发散性的思维方面分析了高中数学单元教学设计,旨为教学工作者提出参考。
简介:意见收敛定理是主观主义概率论的一条重要定理,它表明随着证据的增加,验前概率的主观性将被验后概率的客观性所代替。意见收敛定理被看作主观概率的动态合理性原则,因而被用来解决休谟问题,即归纳合理性问题。然而,哈金有说服力地表明,意见收敛定理证明的是条件概率Pr(h/e)的收敛,而不是验后概率Pre(h)的收敛。主观主义概率论暗中接受的一个等式是:Pre(h)=Pr(h/e),通常称之为“条件化规则”。这样,归纳法的合理性问题变成条件化规则的合理性问题。为此,本文提出一个新的合理性原则,即“最少初始概率原则”,将它同“局部合理性”观念结合起来便可为条件化规则的合理性加以辩护。