简介:相似三角形是初中数学中空间与图形领域的一块重要内容,相似三角形的知识体系是在全等三角形知识体系的基础上的拓广和发展,相似三角形与全等三角形是承上启下的关系,其中包含了重要的数学思想:从特殊到一般.学好相似三角形的知识,为今后进一步学习三角函数及与相似有关的比例线段等知识打下良好的基础,相似三角形内容主要包括比例线段,相似三角形,相似三角形的条件、性质及其应用,相似多边形,图形的位似等.这些内容是以比例线段为基础,以相似三角形为中心展开并进行学习和讨论的.主要内容重视对知识的探究和运用,重视与实际问题的联系及运用相似知识解决实际问题能力的培养.海南省中考试题涉及到相似的分值大概在3—15分.
简介:设An+1是n+1维仿射空间,D表示An+1上的平坦联络,M是n维光滑流形,x:M→An+1是一个非退化的仿射浸入.对于M上的横截向量场ξ,存在唯一的选择(称为仿射法向量场),使得上述浸入是一个Blaschke浸入(见[2]).设▽是此浸入由D在M上诱导的仿射联络,我们有:DXY=▽XY+h(X,Y)ξ这里X,Y,Z是M上的切向量场,h是对称的双线性形式,由它可以定义M上的伪黎曼度量G,称为Blaschke度量,S称为M的形态算子.若S=λid,则称M为仿射球,当S=0称M为虚仿射球.设▽为由Blaschke度量G在M上诱导的Levi-Civita联络,定义:C(X,Y,Z)=(▽Xh)(Y,Z)称C为M的三次形式,K为差异张量,J为Pick不变量,L1为仿射平均曲率.
简介:一、读书自学 P33~P35二、知识回顾1.解直三角形根据直角三角形中已知两个元素(除去直角),其中至少有一已知元素是边,求出其余的过程.2.解直角三角形的根据.在Rt△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,六元素的主要关系如下:(1)三边关系:a2+b2=,(2)两锐角关系:∠A+∠B=,(3)边与角的关系(以∠A为例)sinA=,cosA=,tgA=,ctgA=.(4)面积公式:S△ABC=12a·=12c·hc(其hc为c边上的高)三、典型范例例1 在Rt△ABC中,∠C=90°,a=2,b=6,求c,∠A和∠B.解 在Rt△ABC中,∠C=90°.由勾股定理:
简介:一、填空题(每小题2分,共10分)1.x2-4=(x+2)()2.当x=时,分式x+22x+5的值为零.3.(-10)2的算术平方根是.4.a+bab=( )a2b5.计算:x2-y2xy÷(x+y)=.二、选择题(每小题3分,共9分)1.下列各式中,计算正确的是( ).①x4·x2=x8 ②x3y÷x23y2=yx③(a-b)2(b-a)2=1 ④-x-y-y-x=-1(A)1个 (B)2个 (C)3个 (D)4个2.有理式x2,2x,-13xy2,x5-zy中是分式的个数有( ).(A)1个 (B)2个 (C)3个 (D)4个3.如果x+yy=2,则xy=( ).(A)-1 (B)-2
简介:一、填空题(每小题2分,共10分)1.分解因式:2x2-132=.2.计算:ax-y-ay-x=.3.当x时,分式5xx-1有意义.4.若3x+4m=5,则m=.5.如果a2+b2-2a-4b+5=0,则2-2b=.二、选择题(每小题3分,共9分)1.下列各式中,计算正确的有( ).①ab=ambm ②-5b-6a=-5b6a③(-2xy)2=2x2y2 ④(a-b)2=(b-a)2(A)1个 (B)2个 (C)3个 (D)4个2.在公式S=12(a+b)h,已知S、b、h,则a=( ).(A)2Sh-b (B)2Sh+b(C)h2S-b(D)h2S+b3.下列多项式中,不能用完全平方公式分解