简介:给出一种基于商的形式的Lagrange与Hermite插值公式及其证明,同时还给出了两个相关的不等式.
简介:当上市银行的长期负债系数γ的取值不同时,应用KMV模型测算出的银行违约概率大相径庭。根据债券的实际信用利差可以推算出上市银行的违约概率PDi,CS,根据长期负债系数γ可以运用KMV模型确定上市银行的理论违约概率PDi,KMV。本文通过理论违约率与实际违约率的总体差异^n∑i=1|PDi,KMV-PDi,cs|最小的思路建立规划模型,确定了KMV模型的最优长期负债γ系数;通过最优长期负债系数γ建立了未发债上市银行的违约率测算模型、并实证测算了我国14家全部上市银行的违约概率。本文的创新与特色一是采用KMV模型计算的银行违约概率PDi,KMV与实际信用利差确定的银行违约概率PDi,CS总体差异^n∑i=1|PDi,KMV-PDi,cs|最小的思路建立规划模型,确定了KMV模型中的最优长期负债γ系数;使γ系数的确定符合资本市场利差的实际状况,解决了现有研究中在0和1之间当采用不同的长期负债系数γ、其违约概率的计算结果截然不同的问题。二是实证研究表明,当长期负债系数γ=0.7654时,应用KMV模型测算出的我国上市银行违约概率与我国债券市场所接受的上市银行违约概率最为接近。三是实证研究表明国有上市银行违约概率最低,区域性的上市银行违约概率较高,其他上市银行的违约概率居中。
简介:国内外许多学者认为,数学是有别于自然科学和社会科学的独立科学形式。本文主要参考《古今数学思想》[1]和《数学史教程》[2],从历史与哲学的角度探讨数学成为独立科学形式的主要根源。通过考证发现,数学成为独立科学形式的主要根源在于历史上三次重大的哲学思潮,它们导致了纯粹数学研究与背景问题(学科)研究的一次融合和三次重大分离,即:(1)毕达哥拉斯的'万物皆数'的哲学思想导致了第一次分离,形成古希腊抽象数学体系;(2)随着'文艺复兴'时期古希腊文明的复苏,数学和背景问题(学科)研究开始强大融合,并逐步被笛卡尔、伽利略以及后来的牛顿和莱布尼茨的'科学的本质是数学'的哲学思想所主宰,导致了