简介:给出一种基于商的形式的Lagrange与Hermite插值公式及其证明,同时还给出了两个相关的不等式.
简介:提出了非线性保守系统周期运动的Hermite插值解法.该方法首先将时间转换为周期运动时间,由此系统的微分方程变为适用于Hermite插值的形式.与Qaisi提出的传统幂级数法不同,采用两点Hermite插值函数代替一点幂级数展开,保证了求解的收敛性及精度.使用Hermite插值解法给出了一类非线性振子的近似通解.研究表明,该近似通解不但可用于进一步分析振子的振动特性,且具有较高精度.
简介:利用中国剩余定理、行列式以及线性方程组理论给出了Lagrange插值公式的几种构造性证明,得到了Vandermonde矩阵的逆矩阵的一种算法.
简介:本文在等距分划上引入在似于文[1]的I型广义Hermlie样条插值,改进了Ⅱ型广义Hermite样条.与文[1]比较,我们证明了改进后的Ⅱ型广义Hermite样条插值的逼近精度得到了充分的提高.并利用这二种样条插值,讨论了对振荡积分,有限Fourier积分等的数值逼近.