学科分类
/ 25
500 个结果
  • 简介:摘要已知数列{an},a1=a,an+1=pan+q(p≠1,q≠0是常数),求数列{an}的通项公式an,是高中常见的递推数列问题。这类数列通常可转化为an+1+λ=p(an+λ),或消去常数转化为二阶递推式an+2-an+1=q(an+1-an),或归纳猜想证明。本文列举了五道题进行了分析。

  • 标签: 递推数列转化分析
  • 简介:一次高三调研听课,教师A出示了如下一道数列题:问题在数列{an}中,a1=3,an+1=3an^2,求数列{an}的通项公式.稍作询问之后,教师A给出了如下解法:解法1:由题设知an〉0,则对an+1=3an^2两边取对数,得lgan+1=lg3+21ga_n,

  • 标签: 教学思考 通项公式 首项 题设 变式 道数
  • 简介:没有斐波那契,也就没有斐波那契数列;没有斐波那契数列,历史也不会记住斐波那契.斐波那契是欧洲第一位致力于研究印度和阿拉伯数学理论的数学家,被人称作“比萨的莱昂纳多”.

  • 标签: 斐波那契数列 数学理论 数学家 阿拉伯
  • 简介:在高中数学中,数列知识占据着十分重要的地位。在高考数学试题中,无论是对基本解题方法的考查,还是对与其他知识交汇命题的综合考查,都会涉及数列知识。而在数列问题中,求和是一种常见的问题,对数列求和问题的考查常常也是高考的热点和难点。数列求和的方法灵活多变,形式灵活多样,这些解题技巧最终都可以归结为几种基本方法。学生只要掌握了这些方法与技巧,便可以在考试中以不变应

  • 标签: 解题技巧 高考数学 综合考查 通项 裂项相消法 对应项
  • 简介:

  • 标签:
  • 简介:第Ⅰ部分(苏教版)1.(苏教版必修《数学5》P41习题2.2(1)16)已知数列{an}为等差数列,若ap=q,aq=(p,q∈N^*)则ap+q=_.

  • 标签: 等差数列 练习 编题 课本 苏教版 数学
  • 简介:习题是数学的载体,于是解数学习题就成为数学学习的重要内容.习题课是数学学习的一种重要课型,它是新授课内容的巩固和延伸,经过新授课上对数学概念、法则等的讲解,学生初步理解了这些概念、法则,通过习题课的教学可使学生加深对这些概念的理解,从而使概念完整化、系统化,牢固掌握所学知识,逐步形成合理完整的认知结构.习题课教学质量的优劣,教学效率的高低,将对数学总体教学质量产生直接的影响.然而当前高中习题课教学中的普遍现象是,教师很少或根本不留时间给学生思考,整堂课都在“细细地”讲解解题方法和解题技巧.长期下来,致使学生对习题课感觉枯燥乏味,失去学习兴趣,学习效果也急速下降.

  • 标签: 习题课教学 数学概念 数学学习 数列 授课内容 教学质量
  • 简介:摘要迁移理论贯穿于高中数学的各个阶段,在高中数学教学过程中采用迁移理论对于学生认知结构和举一反三能力的培养具有非凡的意义。合理有效地运用迁移理论,不仅有利于学生学习兴趣和动力的提高,以及学生综合素质的全面提升,同时也有利于教师教学方法的不断改进和完善,而且对我国教育制度改革的不断深化也是大有裨益的。

  • 标签: 迁移理论高中数学教学运用研究
  • 简介:人教版高中数学教材直接给出递推数列的概念,显得较为突兀,不足以引起学生的学习动机。通过对数学史的简单回顾和梳理,发现可以从趣味性很强、递推公式和通项公式的关系容易发现的汉诺塔游戏人手来引入课题,使教学更有趣味性、可学性和新颖性。教学过程中,还融入了斐波那契其人其书、斐波那契数列与螺线、斐波那契兔子问题和棋盘问题等数学史和数学文化素材,有效实现了寓教于乐、寓理于“做”、寓数于“形”的效果。

  • 标签: HPM 递推数列 汉诺塔 教学设计
  • 简介:数列是高中数学的重难点问题,也是高考考查的重点内容,由于它是一个特殊的函数,因此在解题的过程中经常会用到一些函数的思想方法,其中待定系数法求数列通项就是一种非常不错的思想方法。

  • 标签: 待定系数法 数列通项 思想方法 高中数学 函数 高考
  • 简介:"山不过来,我过去"是《古兰经》中的一个经典故事.故事寓意:这个世界本来就没有移山之术,唯一可以将山移过来的方法就是——山不过来,我过去.在平时的教学工作中,每个老师都会遇到"移山"一样的教学难点,但囿于多年教学形成的固有思维模式,

  • 标签: 数列求和 教学工作 《古兰经》 教学难点 思维模式 故事
  • 简介:本文所选课例为2015年4月笔者在江苏省教研室“教学新时空”上的一节录像课,授课对象为江苏省首批四星级普通高中的高一年级学生,知识基础相对较好,自学能力较强.本节课是在学生已经初步学习了数列有关知识之后的一节专题课,学生对有关概念已经基本理解、有关方法已经基本掌握,因此在课题的引入、复习和练习中应鼓励学生积极参与,进而增强学生学习的主动性、积极性,提高学习效果.

  • 标签: 教学设计 递推数列 课堂教学 优质高效 一年级学生 通项
  • 简介:在高中数学求数列通项公式的教学中,有些方法教师在教学中只是告诉学生怎么用,但是具体的应用原理学生并不知道。本文利用函数有关知识和函数思想,以它们之间的内在联系为纽带,将函数与数列联系起来,通过函数思想解释了该问题的解题思想,以期使学生从理论和实践上接受和理解新知识。同时通过多种解题方法的研究,使学生从不同的思维角度掌握问题的解法,从中领会到推导过程中所菹舍的数学思想。

  • 标签: 函数思想 通项公式 递推关系 待定系数法
  • 简介:在平时的数学教学中普遍存在着这样一种教学现象:学生刚做完作业或考完试后,总喜欢立即到教师或同学那里去校对答案.他们只关注题目的数据结果而忽视问题解答过程的准确性,更谈不上探究和分析解题产生错误的原因何在,盲目地认为只要答案对了,解法肯定是正确的,解题就没问题了.其实不然,在学生解题的过程中,有时也会出现结果正确,但解题过程和方法上错误的情况,而这种所谓“正确答案”背后的错误解法,极易掩盖他们对数学问题概念不清或知识原理认识上的偏差等缺陷,偏离数学问题的本质,影响学生数学理性思维的发展.本文将通过一节教学探究课中所生成的问题,给出一则结果正确并不能代表其解法正确的典型事例,供参考.

  • 标签: 数列问题 数学教学 解题过程 错误解法 数学问题 解答过程
  • 简介:一、累加法(也叫逐差求和法)利用an=a1+(a2-a1)+…+(an-an-1)(n≥2,n∈N*)求通项公式的方法称为累加法。

  • 标签: 数列通项公式 求法 求和法 加法
  • 简介:从前,有一位农夫捡到了一对刚出生的小兔子,他好心把它们带回家喂养。一个月后,这对小兔子长大了,并且在第三个月时生下了另外一对小兔子,这时农夫就有两对小兔子啦!

  • 标签: 小学生 语文学习 阅读知识 课外阅读
  • 简介:数列求和是数学学习的重难点,也是高考的必考点。除等差等比数列有公式外,大部分的数列求和都要进行变形,应用技巧来解。下面将介绍六种数列求和方法。(1)公式法。这类题比较好拿分,只要学生把数列的类型分析清楚,套用公式即可。(2)错位相减法。首先求出数列的通项,然后分析数列通项的构成,此方法主要适用于求数列{a_n·

  • 标签: 错位相减法 题比 通项 类型分析 套用公式 公式法
  • 简介:纵观近十年的江苏高考数学试卷,我们从中感受到了强烈的新课程的理念。试卷设计科学、明快、简洁,注重对重要知识点和思想方法的全面考查。试题往往乍一看平淡无奇,但越品越有味,越思考越能发现命题者的用心。例如2013年江苏卷数列综合题,平淡中透出不平凡。本文就此题进行简单的探究。

  • 标签: 数列综合题 高考 数学试卷 试卷设计 思想方法 江苏卷