简介:研究外部扰动力矩作用下航天器的混沌姿态运动,引入Deprit正则变量建立系统的Hamilton结构,应用Melnikov方法预测系统产生的稳定流形和不稳定流形的横截相交,得到系统产生混沌姿态运动的条件。研究表明:随着转子转动惯量的增加,引起系统出现混沌姿态运动的激励频率的范围逐渐减小。最后,对相空间轨线的数值模拟表明理论分析的可靠性。
简介:考虑水平轴风力发电机组齿轮箱弹性支撑的柔性连接特性,基于集中质量思想和拉格朗日方法,建立风力发电机传动系统多体动力学模型,研究了齿轮箱弹性支撑对传动系统结构动力学特性的影响.利用动力学模型和模态分析方法,得到了由弹性支撑耦合到系统后的模态频率,并获取了在该模态激励下的模态动能分布.采用变参数方法进行传动系统模态对齿轮箱弹性支撑刚度变化的敏感性分析,利用模态叠加法进行齿轮箱体的动响应分析.数值求解结果和分析表明,考虑齿轮箱弹性支撑的传动系统某阶固有频率即为弹性支撑下齿轮箱体振动主模态;弹性支撑线刚度对传动系统低频率固有模态存在一定影响;齿轮箱体振动分析时应考虑1阶和2阶的低频模态较为合理.本研究工作对传动链系统方案可靠性设计和抑制传动链振动的加阻控制提供了一定理论基础.
简介:本文中,我们讨论了含参量分数阶微分系统的基本分岔,即跨临界分岔、折叠分岔与音叉分岔.首先,根据分数阶Lyapunov方法,讨论了含参量分数阶微分系统的稳定性,并给出了这些基本分岔的相图.其次,根据Taylor展式与隐函数定理,研究了分数阶微分系统的规范形,从而求出这些基本分岔的拓扑规范形.
简介:为了协调高速铁道车辆的运动稳定性与曲线通过性能之间的矛盾,本文采用多目标优化方法对一种高速铁道车辆的关键悬挂参数进行了优化处理.采用多体动力学技术建立了某型高速铁道车辆62个自由度的动力学模型,模型考虑了轮轨接触几何非线性、轮轨蠕滑非线性和阻尼非线性等.采用ADAMS—Matlab联合仿真对车辆悬挂系统进行参数化改造,使弹簧刚度和阻尼系数均可调.采用基于遗传算法的多目标优化方法对悬挂参数进行优化,使车辆模型能同时满足3种动力学指标.对比优化前后模型的动力学性能可以发现:模型的运动稳定性和曲线通过性能得到显著提高,虽然运行平稳性有小幅降低,但仍能保持在优良的工作状态.
简介:为研究含间隙齿轮碰振系统的全局及周期运动的稳定性及分岔条件,建立了齿轮副主动轮的单自由度非线性动力学模型.运用非光滑系统Melnikov理论研究齿轮系统异宿轨道全局分岔条件,然后,求得各分段系统的通解,再将每个切换面作为Poincaré截面,运用组合映射的方法分析系统的周期运动特性.最后通过数值模拟,得到不同参数条件下系统的运动状态和分岔特性,验证了Melnikov方法分析齿轮非光滑系统的有效性.
简介:研究了不确定参数的Lorenz系统和Rossler系统的异结构同步问题.基于Lyapunov稳定性理论,采用主动同步,自适应同步两种方法实现异结构混沌系统的同步,并且利用数值模拟来阐释理论的有效性.