简介:首先申明笔者是不懂数学的,更不懂什么叫哥德巴赫猜想。笔者第一次知道歌德巴赫猜想这个名词还是在报纸上见到一篇介绍我国著名数学家陈景润研究哥德巴赫的成果。不久前我在东吴大学的校刊上见到一篇《哥德巴赫猜想并不普遍存在》,该文介绍秦家驹老先生用手算和珠算研究歌德巴赫的成果。读后不敢自秘,将秦老先生的研究介绍给爱好者参考。毕业于上海东吴大学法律系的秦家驹先生,曾先后任职于上海中国通商银行和浙江省建筑工程公司等单位。秦氏家族乃宋代大学士秦观(秦少游)的直系后人,秦老先生早年虽攻读法律,但终身一直有志于数学研究,就在著名数学家陈景润证明了哥德巴赫猜想的(1+2)命题后不久,他即开始了(1+1)的研究,多年来,他仅凭藉手算和珠算进行了天文数量级的演算和推理。从其独特的思路,得出了该猜想并不普遍存在的结论。秦家驹先生希望在有生之年,将其凝聚着多年心血的研究能公诸于世,以慰藉其坎坷多难的一生。现将其研究成果的主要内容刊载如下:1 哥德巴赫猜想的由来1742年6月7日,哥德巴赫(Goldbuch)在给数学家欧拉(L.Eulen)的书信中提出了这样两个命题:1每一个...
简介:国内外许多学者认为,数学是有别于自然科学和社会科学的独立科学形式。本文主要参考《古今数学思想》[1]和《数学史教程》[2],从历史与哲学的角度探讨数学成为独立科学形式的主要根源。通过考证发现,数学成为独立科学形式的主要根源在于历史上三次重大的哲学思潮,它们导致了纯粹数学研究与背景问题(学科)研究的一次融合和三次重大分离,即:(1)毕达哥拉斯的'万物皆数'的哲学思想导致了第一次分离,形成古希腊抽象数学体系;(2)随着'文艺复兴'时期古希腊文明的复苏,数学和背景问题(学科)研究开始强大融合,并逐步被笛卡尔、伽利略以及后来的牛顿和莱布尼茨的'科学的本质是数学'的哲学思想所主宰,导致了
简介:根据折叠桌的运动特征,选取折叠桌的四分之一为研究对象,建立任意角度下桌脚点的运动变化模型。考虑到产品稳固性、加工便利性和节约用材三方面对加工参数的影响,对折叠桌进行受力分析,得到多目标组合优化模型,用以确定出折叠桌的最优设计参数。针对用户提出的桌面形状要求,建立桌脚曲线的参数方程。作为模型推广,以椭圆状折叠桌为例,运用Matlab画出了桌脚边缘线在折叠过程中的动态变化示意图。同时,又深入研究RobertvanEmbricqs的滑动折叠桌,建立了新的桌脚曲线参数方程。最后,运用Matlab对多种形状折叠桌进行仿真,编写多目标优化算法,得出了最优加工参数,并进行了算法描述。