简介:本文研究常微分方程组情形的Ambrosetti-Prodi型问题.在非线性项超线性,凸性等条件下.得出随着参数的变化。问题无解,有唯一解,至少有两解的结论。
简介:运用Leray-Schauder原理讨论一阶常微分方程多点初值问题{x'(t)=f(t,x(t)),a.e.t∈{0,T]x(0)+k=1∑^makx(tk)=c0的可解性,其中f是一个Caratheodory函数
简介:利用锥上的Krasnoselskii不动点定理,证明了二阶非线性具特征值问题的脉冲微分方程正解的存在性.
简介:在本文中,我们利用优级水清给出Jabotinsky方程(J2)和(J3)解析解存在的一些充分条件。