学科分类
/ 25
500 个结果
  • 简介:本文研究常微分方程组情形的Ambrosetti-Prodi型问题.在非线性项超线性,凸性等条件下.得出随着参数的变化。问题无解,有唯一解,至少有两解的结论。

  • 标签: 有序BANACH空间 极小解 无解
  • 简介:给出并证明了自治和非自治常微分方程组积分因子存在的充要条件,从而给出当常微分方程组的向量场散度不为零时的构造积分因子的方法。

  • 标签: 常微分方程组 积分因子 充要条件
  • 简介:本文对积分算子I_α作了进一步的讨论,并利用它,得到了常系数Volterra弱奇异积-微分方程的一种算子解法.

  • 标签: 积分算子 积-微分方程 解法
  • 简介:针对一类常微分方程初值问题u'=a(t)u+f(u),u(0=α,用Hermite插值积分,获得了一种改进的4阶单步方法,并证明了该格式的稳定性和收敛性,数实实验表明,与4阶Runge-Kutta方法,4阶Gear方法相经,长较大时,该格式仍具有较好的精度。

  • 标签: Hermite插值积分 单步方法 误差估计 常微分方程 初值问题 Lipchitz
  • 简介:运用Leray-Schauder原理讨论一阶常微分方程多点初值问题{x'(t)=f(t,x(t)),a.e.t∈{0,T]x(0)+k=1∑^makx(tk)=c0的可解性,其中f是一个Caratheodory函数

  • 标签: 存在性 LERAY-SCHAUDER原理 多点初值问题
  • 简介:在l^1空间研究了常微分方程形式的M/M/1排队模型确定的算子А的谱问题.通过细致的谱分析,表明算子А的谱是一个椭圆型,椭圆内部点全是算子А的本征值.0位于椭圆的右边界点是边界上唯一的本征值,从而0不能与其它谱点相分离.这一结果表明常微分方程形式的M/M/1排队系统在有限时间不可能看到系统的稳定状态.

  • 标签: M/M/1排队模型 几何解 概率母函数
  • 简介:考虑时标上奇异三阶微分方程特征值问题.首先使用Krein-Rutmann定理得到正线性算子的第一特征值,再联合不动点指数定理证明了特征值问题正解的存在性,同时也给出了参数λ的取值区间.

  • 标签: 微分方程 特征值 奇性 时标 正解
  • 简介:研究含两参数的二阶常微分方程Cauchy问题解的多重层性质,根据不同层次引用不同的伸长变量,分别构造了具有不同量级的边界层校正项,从而证得关于解的一致有效的渐近展开式和有关的余项估计.

  • 标签: 双参数 CAUCHY问题 多重层性质
  • 简介:在分析微分方程课程教学现状的基础上,提出了微分方程课程的教学设计策略.克服以往传统教学中存在的缺陷,剖析教学上的难点,实施以"融合背景、剖析思想、多维表达、多层训练"为主要内容的微分方程课程教学设计策略,培养学生的理论分析能力、解决问题的能力和创新能力.

  • 标签: 微分方程 教学设计 数学教育
  • 简介:本文将常系数线性微分方程的特征根理论推广到变系数线性微分方程上去,从而建立了线性微分方程系统一的特征根理论。常系数线性微分方程的特征根理论实质是矩阵的特征根理论,因此,我们建立的理论也可以看成将矩阵的特征根理论平移到线性微分方程系上去。矩阵的特征根分简单特征根(初等因子次数为1)与复杂特征根(初等因子次数大于1)两类。本文先推广前者并称之为“方程的特征根”;然后推广后者,并称之为“方程的特征阵”。

  • 标签: 线性微分方程 特征根 特征方程 变系数 初等因子 线性系
  • 简介:在Banach空间中利用上下解方法与不连续增算子不动点定理,研究了含间断项和右端函数具有一阶导数项的二阶非线性常微分方程周期边值问题的最大解、最小解的存在性,推广和改进了现有的结果.而且对于有限维空间,我们获得的这些结果也都是新的.

  • 标签: BANACH空间 周期边值问题 上下解 增算子不动点定理
  • 简介:正倒向随机微分方程源于随机控制和金融等问题的研究,反之,方程理论的研究成果在控制、金融等领域也有着重要的应用。基于正向和倒向随机微分方程的理论成果,正倒向随机微分方程的研究在短时间内取得了长足进步。本文将从方程可解性这一角度出发,对正倒向随机微分方程目前取得的成果进行系统的总结与探讨。

  • 标签: 倒向随机微分方程 正倒向随机微分方程 可解性 随机控制 金融数学
  • 简介:Foradifferentialequation,atheoreticalproofoftherelationshipbetweenthesymmetryandtheone-parameterinvariantgroupisgiven;therelationshipbetweensymmetryandthegroup-invariantsolutionispresented.Asamapplication,somesolutionsoftheKdVequationarediscussed.

  • 标签: 微分方程 对称性 群不变解 KDV方程
  • 简介:分数阶微积分是一个古老而又新颖的课题,近30年来,由于在包括分形现象在内的物理、工程等诸多应用学科领域应用的拓展,激发了科研人员对分数阶微积分的巨大热情。分数阶微分方程现在已应用于分数物理学、混沌与湍流、粘弹性力学与非牛顿流体力学、高分子材料的解链、自动控制理论、化学物理、随机过程和反常扩散等许多科学领域。分数阶微分方程边值问题是非线性常微分方程理论研究中一个活跃而成果丰硕的领域。本文讨论了分数阶微分方程边值问题的一些理论,介绍了作者的著作《分数阶微分方程边值问题理论及应用》的基本内容。

  • 标签: 分数阶微积分 边值问题 分数阶模型
  • 简介:本文给出了分数阶积分微分方程的一种新的解法.利用未知函数的泰功多项式展开将分数阶积分微分方程近拟转化为一个涉及未知函数及其n阶导数的线性方程组.数值例子表明该方法的有效性.

  • 标签: 泰勒多项式 分数阶 积分微分方程