简介:利用变分原理研究超线性常微分p-Laplace系统周期解的存在性.在带有脉冲和阻尼作用项时,根据易一型山路定理,得到了系统多重周期解的存在性.
简介:考虑由磁流体力学方程组控制的二维不可压缩流体的初边值问题,在边界光滑的有界区域中,当(u0,B0)∈((Wm,p(Ω))2×Wm,p(Ω))时,利用Galerkin方法和先验估计,得到了相应的初边值问题存在唯一的弱解(u(.,t),B(.,t))∈((Wm,,(Ω))×Wm,p(Ω)),并证明了弱解对初值(U0,B0)具有连续依赖性.
简介:本文讨论矩阵方程在子矩阵约束下的Hermitian解的共轭梯度迭代算法,先转化成两个低阶方程,然后利用共轭梯度思想分别构造出低阶方程的共轭梯度迭代算法,运用算法求出矩阵方程的Hermitian解及最佳逼近,最后给出了数值实例来验证算法的有效性.
简介:本文讨论了求解Sylvester方程AXB+CX=D的OROD迭代法(正交残量法和正交方向迭代法)的几个重要性质,证明了该算法产生的误差序列是单调递减的,同时给出了该算法的最小化性质的精确刻画,最后给出了一些数值例子.
简介:本文提出了求解非线性方程组的一种非精确Broyden方法.该方法是文献[8]中精确Broyden方法的推广.在适当的条件下,我们证明了非精确Broyden方法具有全局收敛性和超线性收敛性.数值实验表明,该方法效果较好.