简介:证明了转移函数是l∞的一个子空C1上的正的压缩C0半群,其极小生成元恰好是Markov积分算子半群的生成元在C1中的部分;Markov积分算子半群的生成元稠定的充分必要条件是q-矩阵Q一致有界;同时转移函数是Feller-Reuter-Riley的充要条件是Markov积分算子半群的生成元在c0中的部分产生一个强连续半群.最后,在序Banach空间给出了增加的压缩积分算子半群的生成定理.
简介:通过权函数方法和算子理论,定义了一个Hilbert型积分算子,并给出了它的范数.作为应用,建立了一个Hilbert型积分算子不等式和它的等价形式,并考虑了一些特殊结果.
简介:单个不可分的操作员g_(Ω,α),和Marcinkiewicz不可分的操作员μ_(Ω,α)被学习。操作符的内核象|y一样表现|~(-n-α)(α>0)接近起源,并且包含震荡的因素e~((i|y|)~(-β))(β>0)并且联合起来的范围S~(n-1)上的分发Ω。如果Ω与0
简介:著名的Hardy-Littlewood不等式在分析数学及其应用中均起着重要的作用.但要求出该不等式中的最佳常数的值,却是一个困难的问题.为此,笔者在《常用不等式》(第3版)中曾将该问题作为未解决问题中的第109题.在笔者论文"关于Hardy-Littlewood不等式中的最佳常数"的基础上,通过将求最佳常数问题转化为求相应的算子范数等新的分析技巧,得到了HardyLittlewood积分算子的范数不等式.作为它的推广,得到n维向量空间上具有径向核的新的积分算子范数不等式.
简介:在区间(a,6)上,定义了一个带参数的核为_1_|x-y|r的Hilbert型奇异积分算子T,研究了它的有界性问题及其涉及内积的等价形式。作为应用,还考虑一类偏微分方程解的估计。
简介:应用实分析的方法,讨论了一般非齐次核Yang-Hilbert型积分算子有界的若干等价条件,并考虑了齐次核的类似情形.
简介:引入一类Lupas-Baskakov积分算子,给出它对有界变差函数的点态逼近度,并指出精确的逼近阶。
简介:证明了当0〈P≤1,1〈q1〈q2〈∞,1/q2=1/q1-β/n,a≥n(1/q1)时,分数次积分算子是HK^a,pq1(R^n)有界的,而且还是HK^a,pq1(R^n)到HK^a,pq2(R^n)有界的。
简介:在引入修正Cauchy核的基础上,从算子的角度出发,引入无界域上的一些奇异积分算子,对算子的模进行估计,得到的结果对于解决无界域上的边值问题和讨论Cauchy型积分边界值的连续性起到了很重要的作用.
简介:讨论一类抽象Volterra型积分算子,利用此获得含控制参数的抽象动力方程边值问题的解。这种新的求解法我们称为积分算子求解法。
简介:本文中,我们对一类推广型多线性分数次积分算子TΩ,lA_1,A_2,…,A_t进行讨论,得出它是从L~(q1)空间到L~(q2)空间的有界性,进而证明了此算子及其变形算子均是MK_(α,λ)(p1,q1)空间到MK_(α,λ)(p2,q2)空间也是连续的.
简介:引入独立参量,应用权函数的方法及实分析技巧,建立齐次与非齐次核两类Hilbert型积分不等式的等价联系,定义了等价的Hilbert型积分算子,还考虑了一些特殊核的范数.