学科分类
/ 25
500 个结果
  • 简介:证明了转移函数是l∞的一个子空C1上的正的压缩C0半群,其极小生成元恰好是Markov积分算子半群的生成元在C1中的部分;Markov积分算子半群的生成元稠定的充分必要条件是q-矩阵Q一致有界;同时转移函数是Feller-Reuter-Riley的充要条件是Markov积分算子半群的生成元在c0中的部分产生一个强连续半群.最后,在序Banach空间给出了增加的压缩积分算子半群的生成定理.

  • 标签: 参数连续MARKOV链 转移函数 Markov积分算子半群 压缩C0半群 增加积分算子半群 预解正算子
  • 简介:通过权函数方法和算子理论,定义了一个Hilbert型积分算子,并给出了它的范数.作为应用,建立了一个Hilbert型积分算子不等式和它的等价形式,并考虑了一些特殊结果.

  • 标签: Hilbert型算子 BETA函数 权重
  • 简介:单个不可分的操作员g_(Ω,α),和Marcinkiewicz不可分的操作员μ_(Ω,α)被学习。操作符的内核象|y一样表现|~(-n-α)(α>0)接近起源,并且包含震荡的因素e~((i|y|)~(-β))(β>0)并且联合起来的范围S~(n-1)上的分发Ω。如果Ω与00),并且满足某些取消条件,那么T_(Ω,α)和u_(Ω,α)为某p从Sobolev空间L_γ~p扩大围住的操作员到Lebesgue空间L~p。结果改进并且延长一些已知的结果。

  • 标签: 振荡因子 粗双曲奇异积分算子 MARCINKIEWICZ积分算子 SOBOLEV空间
  • 简介:著名的Hardy-Littlewood不等式在分析数学及其应用中均起着重要的作用.但要求出该不等式中的最佳常数的值,却是一个困难的问题.为此,笔者在《常用不等式》(第3版)中曾将该问题作为未解决问题中的第109题.在笔者论文"关于Hardy-Littlewood不等式中的最佳常数"的基础上,通过将求最佳常数问题转化为求相应的算子范数等新的分析技巧,得到了HardyLittlewood积分算子的范数不等式.作为它的推广,得到n维向量空间上具有径向核的新的积分算子范数不等式.

  • 标签: HARDY-LITTLEWOOD不等式 最佳常数 积分算子 范数不等式
  • 简介:目前对奇异积分算子的研究都是其核具有标准型条件及Dini型条件,现把奇异积分算子核的条件减弱成粗糙核,并得到了该类算子的性质及加权不等式,从而扩大了奇异积分算子的研究范围.

  • 标签: 奇异积分算子 粗糙核 加权不等式
  • 简介:证明了当0〈P≤1,1〈q1〈q2〈∞,1/q2=1/q1-β/n,a≥n(1/q1)时,分数次积分算子是HK^a,pq1(R^n)有界的,而且还是HK^a,pq1(R^n)到HK^a,pq2(R^n)有界的。

  • 标签: 分数次积分 HERZ型HARDY空间 有界性
  • 简介:作者得到了粗糙核分数次积分算子的两权弱型不等式,推广了Cruz-Uribe和Perez的结果.

  • 标签: 分散次积分 粗糙核
  • 简介:在引入修正Cauchy核的基础上,从算子的角度出发,引入无界域上的一些奇异积分算子,对算子的模进行估计,得到的结果对于解决无界域上的边值问题和讨论Cauchy型积分边界值的连续性起到了很重要的作用.

  • 标签: CLIFFORD分析 正则函数 奇异积分算子 连续性
  • 简介:本文中,我们对一类推广型多线性分数次积分算子TΩ,lA_1,A_2,…,A_t进行讨论,得出它是从L~(q1)空间到L~(q2)空间的有界性,进而证明了此算子及其变形算子均是MK_(α,λ)(p1,q1)空间到MK_(α,λ)(p2,q2)空间也是连续的.

  • 标签: LIPSCHITZ空间 多线性算子 MORREY-HERZ空间 极大分数次积分算子
  • 简介:研究Dirichlet边界条件下的积分-微分算子逆结点问题.证明了积分-微分算子稠定的结点子集能够唯一确定[0,π]上的势函数q(x)和区域Do上的积分扰动核M(x-t)且给出了这个逆结点问题的解的重构算法.

  • 标签: 逆结点问题 积分-微分算子 势函数 积分扰动核