简介:本文研究复平面单位圆域内一类非线性二维奇异积分方程的可解性。文中应用泛函分析方法,在某些假设条件下,我们得到了此类非线性方程可解的几个充分条件,同时给出方程的解的表示式。
简介:本文研究了一类拟线性系统,引入了反周期边值条件,基于反周期边值条件和数学分析的技巧,建立了新的Lyapunov不等式.
简介:利用广义Virasoro-Toroidal李代数的顶点表示理论研究了广义Baby-TKK李代数的一类顶点表示.
简介:本文引入契贝晓夫多项式作为基函数,利用Galerkin方法研究了一类Fredholm-Volterra积分方程的数值解,并进行了数值模拟.结果表明,该方法可行且有效.
简介:文章利用正规对偶映射的定义,给出了任意Banach空间Lipschitz强伪压缩映射不动点的Ishikawa迭代收敛定理.该定理不仅推广了已知结果,而且还简化了目前相应结果的证明.
简介:深化对本性谱的认识;给出∑_e~n(n≥2)型Banach空间上的摄动类问题的反面回答.
简介:对于多属性群决策中专家权重确定的问题,本文提出了基于聚类的专家权重确定方法,将专家权重分为类别间权重和类别内权重,对专家聚类步骤和类别间权重的计算方法进行了改进。通过专家给出的判断矩阵构建相容度矩阵,利用系统聚类原理,对相容度矩阵进行聚类,得到最大相容度谱系图。通过最大相容度间的距离和给定阈值的比较,对专家进行恰当分类,从而避免了根据现有研究步骤只能将专家分为两类的不足。此外,在确定类别间权重时,除继续对类容量较大的类赋予较大的类别间权重系数外,还引入专家判断矩阵的属性权重一致性来反映类别间的差异,从而有效避免了当某几类专家中含有相等数目专家时,赋予这几类专家相同类别间权重系数的问题。所提方法结构清晰、计算简便,并使得专家权重计算结果更为合理准确。最后运用一个算例对比验证了该方法的可行性和有效性。