学科分类
/ 2
30 个结果
  • 简介:针对富含CO2气井,区别于烃类气井,把偏差因子研究作为CO2气井的重要参数。通过实验研究表明,不同CO2含量、不同压力和温度,对偏差因子都有一定影响。应用烃类气井相关压力、温度分布模型加以偏差因子等参数的修正进行计算,由于计算压力、温度以及偏差因子的相关参数是耦合关系,采用了迭代算法,研究了不同含量CO2下压力、偏差因子等参数沿井筒变化规律。

  • 标签: CO2气井 偏差因子 压力 迭代算法
  • 简介:致密油气藏勘探开发已在全球范围内迅猛增长,水平井分段压裂技术使得此类非常规资源具有了工业开采价值。压裂改造体积是评价压裂施工效果、预测压后单井产能及采收率的重要指标。目前压裂改造体积往往依靠微地震成像的粗略计算或者通过建立压裂模型拟合现场压裂施工数据的方法来获得。针对多段压裂水平井,提出了一种改造体积计算方法。该方法基于不稳定试井理论,在建立的压后生产模型中考虑了次生裂缝的影响因素,利用压后不稳定生产数据进行改造孔隙体积计算。通过对苏里格致密气田一口多段压裂水平井的实例分析,验证了该方法运算过程简便快速、计算结果有效。

  • 标签: 多段压裂 水平井 改造体积 不稳定压力 类拟稳态
  • 简介:在中国山东铝厂废渣堆放区进行的矿物成份、水文地质、和化学地质大调查的基础上,该论文论证了一种计算被污染的地下水和可渗透介质之间物质传送的一种新方法。含水介质作为一种矿物的集合体来考虑,地下水和含水介质之间的相互作用作为一系列的化学反映来考虑。于是,最小能量原理、物质平衡原理、电子平衡原理和电气中性原理被用来建立计算时的一个线性编程数学模型。最后,该数学模型通过一个简单的方法来解答。该方法推测出污水的渗透导致了废渣堆放区发生了大量的地质化学反映。地下水系统中的总能量逐渐减少,并且地球化学系统在地下水流动方向上趋于稳定。

  • 标签: 地下水污染 可渗透介质 物质迁移 数学模型
  • 简介:采用大量数学模型分析泥石流、崩塌和滑坡的动力学。为了评价这些模型在具体作用中的实用性,以及研发新的模型,必须对现有模型进行分析和标准化。根据基本物理原理,将数学模型分为3种类型——连续模型、细胞自动机和非连续模型。连续模型又分为欧拉和拉格朗日子模型;而非连续模型根据所采用的方程组分为单元素和多元素子模型。下面按工程地质作用种类,简要介绍和分析这些模型的应用领域。

  • 标签: 数学模拟 泥石流 滑坡 崩塌 分类
  • 简介:用一系列试验评价废水中DOM(溶解性有机物)的微生物降解的潜力。废水样从Haifa废水处理站和Qishon水库采集,以2-4个月为一个周期,或者用废水或者用土壤微生物对水样进行培养,其特征用溶解性有机碳含量(DOC)、UV254吸光率和激发荧光-辐射基质表示。根据腐殖质/棕黄酸成分和似蛋白质结构,确定了三个主要的荧光峰值。在生物降解过程中,不同程度地增加了三个特殊荧光峰值,本文建议选择非发光成分。在一些实例中,发现一些废水中的荧光物增加,因而提出(1)生成新的与DOM生物降解有关的荧光物质和(2)降解某些有能力抑制DOM荧光物的有机物。根据荧光物强度和UV254的比值,描述了比其他UV吸收成分发光的DOM成分的不同的生物降解动态。总而言之,大约一半的总的DOM很容易降解,剩余的DOM的浓度在8.10毫克/升之间。灌溉土壤的废水中残留的DOM浓度的升高可能有助于地下水中污染物的DOM的聚集。

  • 标签: 废水 溶解有机物(DOM) 激发排出物(EEM) 生物降解 Qishon(Kishon)
  • 简介:欧盟地质封存潜力项目的工作重点是欧洲二氧化碳点源、基础设施以及地质封存的GIS编图。该项目的主要目标是评价欧洲深部咸水含水层、油气构造与煤层中二氧化碳的地质封存能力。其他优先考虑的事项是进一步开发地质封存能力评价、经济模拟与场地选择的方法,以及开展国际合作,尤其是与中国合作。欧盟地质封存潜力项目成果包括适于二氧化碳地质封存的25个国家和欧洲大多数沉积盆地。

  • 标签: 开发地质 能力评价 二氧化碳 封存 欧洲 欧盟
  • 简介:1996年11月,Cepro公司的输油管道发生事故,致使大量汽油泄漏。事故发生地位于捷克共和国西北部的克麦季涅维斯居民点以北1.2公里处。为了盗窃汽油蓄意破坏管道是造成这次事故的原因。据Cepro公司数据,石油泄漏量为15000立方米。由于发现泄漏后迅速采取措施,回收汽油约200立方米,因此在事故发生地的土壤中仍然遗留着13000立方米的汽油。

  • 标签: 石油产品 土壤 地下水污染 数学模拟 石油泄漏
  • 简介:将非线性的分形理论应用于渗流力学,在考虑井筒续流、表皮效应和井筒相再分布的影响下,建立了分形油藏不稳定渗流有效井径数学模型。。用拉普拉斯变换和反演方法求出了无限大地层模型和解析解及长、短时渐近解和有界地层模型的Laplace空间的解析解。分析了地层压力动态特征和参数的影响。

  • 标签: 分形油藏 不稳定渗流 数学模型 解析解 压力动态特征 井径
  • 简介:地质储存是一种能够减少大气中人为二氧化碳(CO2)排放、技术上可行且可直接投入使用的方法。在众多二氧化碳储存方案中,都是使二氧化碳溶解于地层水并将其储存于深部含水层中。含水层储存溶解的二氧化碳的最大能力,就是含水层中饱和二氧化碳总量与当前总无机碳之差,并取决于压力、温度和地层水的盐度。假设在非活性含水层环境下,基于碳酸盐和重碳酸盐离子的浓度,通过能源工业收集的地层水的标准化学分析计算当前碳总量。在实验室环境中开展原位地层水分析时,利用地球化学形态模型计算从水样中释放的溶解气体。为了阐明氧化碳溶解度随水盐度增加而降低,利用纯水中饱和二氧化碳含量的经验关系式计算地层水中的最大二氧化碳含量。通过考虑溶解的二氧化碳对地层水密度、含水层厚度和孔隙度的影响,评估地层水中储存二氧化碳的最大能力,以计算含水层孔隙空间的水容量及水中溶解的二氧化碳容量。这种用于评估含水层中溶解的二氧化碳的最大储存能力的方法,已经被应用于加拿大西部阿尔伯塔盆地的Viking含水层。仅考虑注入高粘度二氧化碳液体的区域,经评估,Viking含水层地层水中储存二氧化碳的能力约为100Gt。随后的简单评估表明,在阿尔伯塔盆地深度超过1,000m的地层水储存二氧化碳的能力约为4,000Gt。该结果同样表明:当含水层地层水中总无机碳(TIC)与饱和二氧化碳溶解度相比非常低时,利用地球化学模型对原位地层水进行分析是不合理的。而且,在这种情况下,甚全可能会忽略当前的总无机碳。

  • 标签: 二氧化碳 溶解度 储存 能力 (容量)含水层 地层水