简介:研究半直线上带无限个脉冲点的中立型泛函微分方程非振动解的渐进性,并给出正解存在的充分条件.
简介:讨论了一类广义Liénard型系统(x)=p(y)k(x),(y)=-f(x,y)p(y)q(y)-g(x)h(y)非零周期解的存在性和不存在性,给出了非零周期解的存在和不存在的一类充分条件.
简介:本文研究一类具有状态时滞和输入时滞的时变时滞线性中立型系统.首先,通过选取合适的Lya—punov—Krasovskii泛函。应用LMI方法和Lyapunov—Krasovskii稳定性定理对时滞相关的系统进行稳定性分析,并设计了相应的控制器.改进了时不变时滞线性系统方面的一些结果.最后用实例验证所得到结果.
简介:本文讨论了2π周期和反周期函数在等距结点上的一类Birkhoff型2-周期三角和仿三角插值问题,给出了此问题有解的充要条件,并构造出插值基。
简介:研究了Banach空间中非线性混合型微分-积分方程初值问题u'=f(t,u,Tu,Su),u(0)=x0的整体解,完全没有要求f的任何增性,利用Monch不动点定理和比较结果得到了初值问题整体解的存在性和唯一解,并且给出了一致收敛于唯一解的迭代序列,改进推广和统一了已有的许多结果.
简介:具有积分型非线性Schroedinger方程是在研究非线性Langrmuir波时考虑到离子惯性作用而导出的,本文讨论了二维空间中具有积分型非线性Schroedinger方程组的初值问题。用积分估计方法证明了整体解的存在唯一性。
简介:本文给出复微分方程的α-形式解的概念,并用weyl型分数阶积分给出形如t^2z^11(t)-(bt+c)z1(t)+βz(t)=0的复微分方程的一种α-负幂解形式,进而得到这种方程有多项式解的充分必要条件.