简介:研究从幂结合广群到实的或复的赋准范空间的Cauchy算子方程的Hyers-Ulam-Rassias稳定性.
简介:主要研究从Dirichlet空间到Bloch空间的某些算子有界性的充要条件以及这些算子与Dirichlet空间上Carleson测度的关系.
简介:Jacobi算子是Sturm-Liouville算子的离散化,通过对无穷维Jacobi算子的特征值的性质进行探讨,得出了无穷维Jacobi算子的特征值对其系数具有连续依赖性的结论,并给出了严格的数学证明.
简介:本文利用K-泛函和光滑模的等价关系,研究Gamma算子加权逼近下的Stechkin-Marchaud不等式,并得到了Gamma算子关于ω^2φ(f,t)ω的逆结果。
简介:著名的Hardy-Littlewood不等式在分析数学及其应用中均起着重要的作用.但要求出该不等式中的最佳常数的值,却是一个困难的问题.为此,笔者在《常用不等式》(第3版)中曾将该问题作为未解决问题中的第109题.在笔者论文"关于Hardy-Littlewood不等式中的最佳常数"的基础上,通过将求最佳常数问题转化为求相应的算子范数等新的分析技巧,得到了HardyLittlewood积分算子的范数不等式.作为它的推广,得到n维向量空间上具有径向核的新的积分算子范数不等式.
简介:在区间(a,6)上,定义了一个带参数的核为_1_|x-y|r的Hilbert型奇异积分算子T,研究了它的有界性问题及其涉及内积的等价形式。作为应用,还考虑一类偏微分方程解的估计。
简介:本文研究了一种修正的Shepard—Lagrange型插值算子在Orlicz空间内的逼近性质,证明了它在Orlicz空间内的有界性,利用光滑模、Hardy—Littlewood极大函数、N函数的凸性及Jensen不等式给出了该算子在Orlicz空间内的逼近度估计.
简介:在Pythagorean模糊集和Hamacher集结算子基础上,研究了Pythagorean三角模糊语言环境下的Hamacher集成算子问题。首先给出了Pythagorean三角模糊语言的定义、运算规则、得分函数、精确函数;其次,介绍了一系列关于Pythagorean三角模糊语言Hamacher集结算子,比如Pythagorean三角模糊语言Hamacher加权平均算子(PTrFLHWA)、Pythagorean三角模糊语言Hamacher加权几何平均算子(PTrFLHWG)等,并研究其具有的性质;之后,提出了两种决策方法来解决Pythagorean三角模糊语言信息环境下的多属性群决策问题;最后,用示例验证所给方法的有效性。
简介:利用Stroemberg-Torchinsky分解,给出了Triebel空间Fp-q(R^n,X)上算子值傅里叶乘子的一个充分条件.在n〈min(p,q)情形下,这里给出的充分条件改进了之前已知的结果.