简介:论文研究非自反Banach空间中Hille-Yosida算子的非线性Lipschitz扰动.首先,证明Hille-Yosida算子的非线性Lipschitz扰动诱导的微分方程的温和解构成非线性指数有界Lipschitz半群;其次,证明非线性扰动半群保持原半群的直接范数连续性质.获得的结果是线性算子半群某些结论的非线性推广.
简介:运用概率型算子的概率性质,研究了局部有界函数厂的Integral型Lupas—Bêzier算子收敛阶,得到更精确的估计。其研究对于Bêzier型算子逼近的研究工作,以及提高运用Bêzier法的计算机辅助设计几何造型的精度的估计有重要意义。
简介:对于D上的Carleson测度μ而言,本文研究在加权Bergman空间Aα~2(D)上具有符号μ的Toeplitz算子Tμ的一些特殊的性质.近几年,在加权Bergman空间Aα~2(D)上的Toeplitz算子的有界性和紧性已经被广泛研究.为了了解Toeplitz算子Tμ的一些其他性质,本文需要估算出单位圆盘的加权Bergman空间上Toeplitz算子的本性范数的界限.
简介:通过权函数方法和算子理论,定义了一个Hilbert型积分算子,并给出了它的范数.作为应用,建立了一个Hilbert型积分算子不等式和它的等价形式,并考虑了一些特殊结果.
简介:针对直接采用原始数据建立尾矿坝变形规律预测verhulst模型不满足精度要求的问题,根据尾矿坝变形规律和缓冲算子理论,选取三种弱化缓冲算子,对原始数据进行弱化缓冲处理,用新生成的序列建立verhulst模型进行精度校核,最后用建立的模型对坝体未来的变形值进行预测。结果表明,采用引入弱化缓冲算子作用后的序列建模,可以提高verhulst模型预测精度,使得预测结果符合尾矿坝变形规律。
简介:本文中,我们对一类推广型多线性分数次积分算子TΩ,lA_1,A_2,…,A_t进行讨论,得出它是从L~(q1)空间到L~(q2)空间的有界性,进而证明了此算子及其变形算子均是MK_(α,λ)(p1,q1)空间到MK_(α,λ)(p2,q2)空间也是连续的.
简介:本文主要研究调和Bergman空间L_h~2(D)上以拟齐次函数为符号的两个小Hankel算子的有限秩换位问题.