简介:受非线性增生映射值域的扰动定理的启发,研究了非线性边值问题(@)在L^p(Ω),1<p<+∞中解的存在性。(@){-∑^Ni,j=1σ/σxi(ai,jσu/σxj)+∑^Ni=1bσu/σxi+g(x,u)=fa.e.inΩ,-σu/σna∈βx(u(x))a.e.onΓ其中f∈L^p(Ω),1<p<+∞给定,g:Ω×R→满足Caratheodory条件。本文把Gupta和Hass所研究的非线性方程加以推广,即在方程中增加了∑^Ni=1bσu/σxi这一项,并把解的存在性的讨论由L^2(Ω)空间推广到L^p(Ω),1<p<+∞空间中。
简介:研究一类特征值问题及其应用.首先应用常微分方程理论讨论一类边值问题非平凡解的存在唯一性,并将该研究结果应用到一类弹性系统的镇定问题.得到了系统渐近稳定的充分条件.