简介:Theproblemofrelatingtheeigervaluesofann×nHermitianmatrixtothoseofitsRayleigh-Ritzapproximationisconsidered.ThesameresidualboundforunitarilyinvariantnormsonHermilianmatricesisobtainedevenwithouttheorlhonormalandRayleigh-RitzassumptionsinStewartandSun’sbook[9,TheoremIV.4.14].TheresultcanalsobeextendedtonearlyHermitianmatrices.
简介:本文讨论矩阵方程在子矩阵约束下的Hermitian解的共轭梯度迭代算法,先转化成两个低阶方程,然后利用共轭梯度思想分别构造出低阶方程的共轭梯度迭代算法,运用算法求出矩阵方程的Hermitian解及最佳逼近,最后给出了数值实例来验证算法的有效性.
简介:在这份报纸,我们在几乎Hermitian上在复杂向量捆上为Hermitian爱因斯坦方程调查Dirichlet问题歧管,并且我们为Hermitian爱因斯坦获得Dirichlet问题的唯一的答案方程。
简介:<正>Foranynaturalnumbersmandn≥17wecanconstructexplicitlyindecomposabledefiniteunimodularnormalHermitianlatticesofranknovertheringofalgebraicintegersRminanimaginaryquadraticfield(-m1/2).Itisprovedthatforanyn(incasem=11,thereisoneexceptionn=3)thereexistindecomposabledefiniteunimodularnormalHermitianR15(R11-latticesofrankn,andweexhibitrepresentativesforeachclass.Intheexceptionalcasetherearenolatticeswiththedesiredproperties.ThemethodgiveninthispapercansolvecompletelytheproblemofconstructingindecomposabledefiniteunimodularnormalHermitianRm-latticesofanyranknforeachm.
简介:ThispapergivesamethodtoconstructindecomposablepositivedefiniteintegralHermitianformsoveranimaginaryqusadraticfieldQ(√-m)withgivendiscriminantandgivenrank.Itisshownthatforanynaturalnumbersnanda,therearen-aryindecompossblepositivedefiniteintegralHermitianlatticesoverQ(√-1)(resp.Q(√-2)withdiscriminanta1exceptforfour(resp.one)exceptions.Intheseexceptionalcasestherearenolatticeswiththedesiredproperties.
简介:Inprinciple,non-HermitianquantumequationsofmotioncanbeformulatedusingasastartingpointeithertheHeisenberg’sortheSchrdinger’spictureofquantumdynamics.Hereitisshowninbothcaseshowtomapthealgebraofcommutators,definingthetimeevolutionintermsofanon-HermitianHamiltonian,ontoanon-HamiltonianalgebrawithaHermitianHamiltonian.Thelogicbehindsuchaderivationisreversible,sothatanyHermitianHamiltoniancanbeusedintheformulationofnon-Hermitiandynamicsthroughasuitablealgebraofgeneralized(non-Hamiltonian)commutators.Theseresultsprovideageneralstructure(atemplate)fornon-Hermitianequationsofmotiontobeusedinthecomputersimulationofopenquantumsystemsdynamics.
简介:本文给出了将分块Hermitian-Toeplitz阵与实矩阵互换,并求其特征结构的一种算法,从而减少对计算机内存的要求和提高处理速度.
简介:LetA∈Cm×n,seteigenvaluesofmatrixAwith|λ1(A)|≥|λ2(A)|≥…≥|λn(A)|,writeA≥0ifAisapositivesemidefiniteHermitianmatrix,anddenote∧k(A)=diag(λ1(A),…,λk(A)),∧((n-k).(A)=diag(λk+1(A),…,λn(A))foranyk=1,2,...,nifA≥0.DenoteallnorderunitarymatricesbyUn×n.Problemofequalitiestoholdineigenvalueinequalitiesforproductsofmatriceswas
简介:SupposethatDisadivisionringinwhichthereisdefinedananti-automorphismα→(?)isinvolutorial,RisaleftvectorspaceoverD.Usingthegivenanti-automorphismα→(?),itiseasytoturnRintoarightvectorspaceoverDbysetingx(?)=ax.Bilinearformg(x,y)connectingtheleftvectorspaceRandtherightvectorspaceRisaHermitianscalar.
简介:Wediscusstwo-stageiterativemethodsforthesolutionoflinearsystemAx=b,andgiveanewproofofthecomparisontheoremsoftwo-stageiterativemethodforanHermitianpositivedefinitematrix.Meanwhile,weputforwardtwonewversionsofwellknowncomparisontheoremandapplythemtosomeexamples.
简介:Uponusingthedenotativetheoremofanti-HermitiangeneralizedHamiltonianmatrices,wesolveeffectivelytheleast-squaresproblemmin‖AX-B‖overanti-HermitiangeneralizedHamiltonianmatrices.WederivesomenecessaryandsufficientconditionsforsolvabilityoftheproblemandanexpressionforgeneralsolutionofthematrixequationAX=B.Inaddition,wealsoobtaintheexpressionforthesolutionofarelevantoptimalapproximateproblem.
简介:由由于Samokish扩大古典分析技术,在其它之中的Faddeev和Faddeeva,和Longsine和麦考密克,我们与含蓄的放气(PSD标志)证明preconditioned的集中是最陡峭的降下为解决Hermitian明确的概括特征值问题的方法。而且,我们导出PSD标志方法的集中的率的nonasymptotic估计。我们证明与移动的一种合适的选择,不定的shift-and-invertpreconditioner是局部地加速的preconditioner,并且是asymptotically最佳的它导致superlinear集中数字例子被举为解决从电子结构计算产生的性恶的Hermitian明确的概括特征值问题在PSD标志方法的集中行为上验证理论结果。当严密、照原尺寸时,preconditioned的集中证明在实际使用堵住最陡峭的降下方法仍然大部分逃避我们,我们相信在这份报纸介绍的理论结果使这些块方法的集中行为的改进理解清楚些。