简介:摘要:针对激光三维扫描图像中噪声干扰大,光条中心提取耗时等问题,根据激光三维图像的特征,提出了激光三维扫描图像处理改进算法。图像预处理过程中,结合不同特征采用不同的滤波方法,消除噪声干扰、增强图像特征。考虑到激光三维扫描的实时性,为了提高激光光条中心提取的效率,文中在steger光条中心提取算法的基础上,简化二维高斯卷积核,采用方向模板对图像进行卷积,计算图像中的各像素的各阶偏导数,进而构建hessian矩阵求得最小特征值和对应的方向向量,从而确定光条中心点,提高了光条中心提取的效率并保证了算法的鲁棒性。实验结果表明:改进算法能够有效去除激光三维扫描图像中的噪声,对不同类型的噪声具有良好的抗干扰能力,而且处理后的激光三维扫描图像质量较高,细节丰富、信息完整。此外,激光三维扫描图像处理的速度得到了优化提升。
简介:摘要:针对激光三维扫描图像中噪声干扰大,光条中心提取耗时等问题,根据激光三维图像的特征,提出了激光三维扫描图像处理改进算法。图像预处理过程中,结合不同特征采用不同的滤波方法,消除噪声干扰、增强图像特征。考虑到激光三维扫描的实时性,为了提高激光光条中心提取的效率,文中在steger光条中心提取算法的基础上,简化二维高斯卷积核,采用方向模板对图像进行卷积,计算图像中的各像素的各阶偏导数,进而构建hessian矩阵求得最小特征值和对应的方向向量,从而确定光条中心点,提高了光条中心提取的效率并保证了算法的鲁棒性。实验结果表明:改进算法能够有效去除激光三维扫描图像中的噪声,对不同类型的噪声具有良好的抗干扰能力,而且处理后的激光三维扫描图像质量较高,细节丰富、信息完整。此外,激光三维扫描图像处理的速度得到了优化提升。
简介:摘要:工厂内违规吸烟可能引起重大的安全事故。为检测是否有人违规吸烟,提出一种可以快速准确检测吸烟的算法。该算法主要基于YOLOv5模型对摄像头输入的视频流进行实时处理。具体来说包含以下两个步骤:首先,选用合适的数据集,并对数据集的标注框进行优化;其次,使用decoupled head来调整模型的网络结构使其更好地适应吸烟检测场景的需求。实验结果表明,优化标注框的数据集召回率可以提升4.4,而改进后的算法相较于原始YOLOv5精确度提高3,召回率提升3.1,可以提供更高的检测准确率和更低的误报率。同时,在实际应用中,该算法具有较高的性能和稳定性,可以有效地用于工厂内吸烟检测的场景。
简介:摘要:随着城市化与工业化的推进,国民经济水平得到了极大的提高。人类的生产活动在创造出大量物质财富的同时,也造成了严重的环境污染问题。本文对YOLOV8网络进行了改进,使用了深度可分离卷积和注意力机制,并提出了一种轻量型目标检测算法,即YOLOV8(ECA)。其在嵌入式设备上可实现20FPS的检测速度,黑烟车识别率可达95.57%。
简介:摘要:在当今军用和民用领域,飞行器在目标搜索、对地攻击、空中搜救、交通巡查以及快递运输等方面发挥着重要作用。因为单架飞行器无法高效率的完成复杂任务,经常需要使用多个飞行器协同完成复杂任务。因此,多飞行器系统在复杂的任务环境实现灵活的任务,已成为重要研究内容,多飞行器协同任务分配问题已成为飞行器自主导航领域亟需解决的关键问题。多飞行器协同任务分配是指:给定飞行器的种类及数量,根据一定的物理环境信息和任务要求,将一个或多个任务分配给一个飞行器,当所有飞行器完成所分配的任务后,整个飞行器编队的整体效能达到最优。基于此,对多飞行器协同任务分配的改进粒子群优化算法进行研究,以供参考。
简介:摘要:为了应对光伏渗透率不断提高带给电网运行的挑战,提出了一种基于机器学习和深度学习的混合方法来预测光伏输出。该方法利用随机森林算法处理光伏发电数据,使用改进粒子群算法的LSTM模型进行发电预测。通过对比实际数据和预测结果,表明该方法可以提高光伏电力输出的预测精度,为光伏电力系统的运行和管理提供了一种有效的工具。