简介:摘 要:通常我们所了解的人脸识别算法是指将人的五官特征或者局部特征经过图像处理,上传到系统后端,再和数据库的人脸照片进行比对,最终识别出所需要的类别。人脸识别算法比较广泛应用于监控、公安系统、考试系统、门禁检查、身份识别等领域,而基于特征提取的人脸识别算法是人脸识别系统中的关键部分,接下来我们将通过本文了解一下关于人脸识别算法的特征提取需要注意的事项。
简介:摘要:特征提取是对原始数据关键特征的表达,能凸显原始数据的主要信息,避免和非主要信息产生“等价”变换,而弱化了主要信息价值。对于时间序列的电池组数据,设计基于注意力机制的时间序列特征提取算法,从而快速地对采集的数据进行有效降维与压缩。
简介:针对齿轮故障时振动信号复杂、特征提取困难的问题,提出采用局部特征尺度分解(LocalCharacteristicscaleDecomposition,LCD)与双谱分析相结合的故障特征提取方法。首先,利用LCD分解法对振动信号进行分解,并结合贝叶斯信息准则(BayesianInformationCriterion,BIC)和峭度时间序列互相关系数2个指标对内禀尺度分量(IntrinsicScaleComponent,ISC)进行筛选;其次,利用双谱分析法对所选取的ISC分量进行融合,提取双谱熵作为特征量;最后,运用该方法实现齿轮振动信号故障特征的提取,并通过齿轮预置故障试验验证了该方法的有效性。
简介:摘要:目标行为特征提取是计算机视觉和行为分析领域的重要任务之一。本研究基于深度学习方法,探索了对目标行为特征进行有效提取的方法。首先,我们回顾了深度学习在计算机视觉任务中的成功案例,并分析了深度学习在目标行为分析和行为识别中的优势。接着,我们概述了基于深度学习的目标行为特征提取方法,并讨论了深度学习模型在这一领域中的应用现状、优势和局限性。我们还比较和评估了不同的深度学习模型,探讨了它们在目标行为特征提取方面的性能差异。在模型设计方面,我们介绍了模型架构和网络结构设计、数据预处理和标注方法、损失函数和训练策略,以及模型参数调优和优化方法。最后,我们进行了实验和评估,通过比较不同模型在目标行为特征提取任务上的表现,验证了深度学习在该领域的有效性和潜力。本研究的结果对于改进目标行为特征提取方法、推动计算机视觉和行为分析的发展具有重要意义。