简介:
简介:定义设E,F,G分别是△ABC三边AB,BC,AC上的内点(不与顶点重合),称△EFG为△ABC的内接三角形.(如图1)图1文[1]指出任意一个三角形至少存在一个内接正三角形,但究竟有几个?文[1]未加解决.本文对这个问题作出解答.
简介:命题设ABC的面积为,三边长分别为a、b、c.则ABC的内接正三角形的最小面积为(2)/((3)/(6)(a2+b2+c2)+2).
简介:命题设△ABC的外接圆半径为R,正
简介:借助几何画板,笔者发现了正三角形的内接正三角形的一个有趣性质:定理如图1,设正三角形ABC的任意内接正三角形为DEF,则△AEF,△BDF,△CDE的欧拉线都是定直线.
简介:本文旨在对圆内接正十七边形中的一类满足特殊条件的内接三角形的个数的探讨。
简介:全等三角形与相似三角形四川师范大学邓安邦一、基础知识1、全等三角形:是指能够完全重合的三角形。(1)性质:对应角相等,对应边相等。(2)判定:①边角边公理(SAS);②角边角公理(ASA);③边边边公理(SSS);④角角边定理(AAS)。2、相似三角...
简介:如果一个三角形(正三角形)的三个顶点都落在一个正方形的边上,则称这个三角形为该正方形的内接三角形(内接正三角形).
简介:问题设圆上的点是等可能分布的,作圆内接△ABC,求△ABC是锐角三角形的概率.
简介:尼罗河下游的人们经常就金字塔和三角形进行思考。左图中的那个年轻女子正在计算圉中所示的三角形的个数,
简介:(1)在一个三角形中,任意两边之和大于第三边;(2)在一个三角形中,任意两边之差小于第三边;(3)三角形三个内角的和等于180。;(4)三角形按角的大小可分为锐角三角形、直角三角形和钝角三角形;(5)三角形的三条角平分线交于一点,三条中线交于一点,三条高所在直线交于一点。
简介:一、中考命题热点1.会运用三角形三边关系,内角和,等腰三角形.直角三角形的性质及识别方法,勾股定理等解答与之相关的几何命题。
简介:【知识要点一三角形】一、三角形的分类①按角分类{锐角三角形直角三角形钝角三角形②按边分类{不等边三角形等腰三角形{一腰与底不相等的等腰三角形一腰与底相等的等腰三角形(等边三角形)
简介:解三角形是高中数学的重点内容,是高考数学的热点问题.这类题目有时会涉及多个三角形、四边形甚至多边形.往往有一定的难度.现就这类问题总结一些常用的解题策略,供同学们参考.1.构造辅助高线,化斜为直【例1】在△ABC中,若tanB/tanC=3/2,c=1,则△ABC的面
简介:新课程方案将正弦定理、余弦定理调整为高中数学内容后,有关三角形内的三角函数问题便成了高考新的热点,又因本部分内容的考题多数属中、低档难度,广大考生一定要认真复习本部分内容,掌握有关解题技巧,确保得分.这部分内容之所以能成为高考热点,是因为高考命题多在知识网络交汇点出题考查学生灵活运用所学知识分析问题、解决问题的能力,
三角形内接三角形的周长
三角形内接正三角形的个数
三角形内接正三角形的最小面积
关于三角形内接正三角形的最小边长
正三角形的内接正三角形的一个有趣性质
圆内接正十七边形中的内接三角形
全等三角形与相似三角形
正方形的内接正三角形
对“圆内接三角形是锐角三角形的概率”问题的探究
三角形
关于周长最小的内接三角形的研究
三角形与全等三角形复习与研究
涉及多个三角形的解三角形问题
三角形内的三角函数问题