简介:数学是一门在非常广泛的意义下研究现实世界中的数量关系和空间形式的科学,它的重要性已经得到广泛的认同。然而,数学要真正显示出它在各个领域中的强大生命力,首先必须为所考察的实际问题建立相应的数学模型,这使数学建模成为联系数学与应用的重要桥粱,是数学走向应用的必经之路。同时,数学建模不仅在以往的众多学科和应用中早已占据着关键性的地位和作用,而且现已成为当代应用数学
简介:给出三个非常容易让人误以为真的测度猜想,通过定理与λ-Cantor集及其余集的构造给出三个猜想的否定答案.
简介:本文介绍了非均匀有理B样条曲线,并给出了非均匀有理B样条曲线的一个插值性质。
简介:参考文献中对Lemke-Howson算法给出了相似于线性规划中的单纯形解法。本文用例指出了该解法中出现循环的情况,导致有解求不出。
简介:Kantorovich不等式的推广文〔4〕给出了x′Ayy′A-1x/(x′xyy′)的上界,其中A是n阶实正定阵,x、y是n维非零实向量。本文给出x′Ayy′A-1x/(x′xy′y)的上界和下界,其中A是任何n×m实矩阵,A-1是A的广义加号逆,x、y分别是n维和m维非零实向量。
简介:设(x*,y*)是以A=[aij]m×n为赢得矩阵G的对策解,则当局中人1,2各自独立地使用其最优策略x*=(x*1,x*2,…,xmn),y*=(y*1,y*2,…,y*n)时,局中人1的赢得期望为对策值v*=x*Ay*T.若局中人双方使用使得方差D(x*,y*)=∑∑(aij-v*)2x*iy*j达最小的对策解(x*,y*),则其赢得靠近v*的概率达到最大.以O记使方差达到最小的对策解的集合.若O满足(x(1),y(1)),(x(2),y(2))∈O蕴涵(x(1),y(2)),(x(2),y(1))∈O,则说O是可换的.本文首先证明了:若矩阵对策G有纯解,则O是可换的.然后证明了如果限定局中人1在其混合扩充策略集的一个非空紧凸子集X中选取策略,那么存在X的一个非空紧子集O(X),它是有限个非空互不相交紧凸集之并,使得只要局中人1使用O(X)中的策略,那么在最坏的情况下可以取得最好的赢得.