简介:针对嫦娥三号软着陆轨道设计与控制策略问题,在合理假设的前提下,建立动力学模型,求解得到了嫦娥三号着陆准备轨道近月点和远月点的速度。针对软着陆过程的6个阶段,通过受力分析,建立了嫦娥三号运动的微分方程模型,以燃料消耗最小为优化目标,以每个阶段的起止状态为约束条件,将软着陆轨道的优化设计问题转化为主发动机推力的泛函极值问题,并将其控制函数转化为近似的多项式函数优化问题。运用四阶Runge-Kutta差分迭代方法进行求解计算,从而得到各个阶段的最优控制函数和控制策略。结果表明,嫦娥三号软着陆过程耗时695s,消耗燃料1269.1kg。
简介:AinteriorpointscalingprojectedreducedHessianmethodwithcombinationofnonmonotonicbacktrackingtechniqueandtrustregionstrategyfornonlinearequalityconstrainedoptimizationwithnonegativeconstraintonvariablesisproposed.Inordertodealwithlargeproblems,apairoftrustregionsubproblemsinhorizontalandverticalsubspacesisusedtoreplacethegeneralfulltrustregionsubproblem.Thehorizontaltrustregionsubprobleminthealgorithmisonlyageneraltrustregionsubproblemwhiletheverticaltrustregionsubproblemisdefinedbyaparametersizeoftheverticaldirectionsubjectonlytoanellipsoidalconstraint.Bothtrustregionstrategyandlinesearchtechniqueateachiterationswitchtoobtainingabacktrackingstepgeneratedbythetwotrustregionsubproblems.Byadoptingthel1penaltyfunctionasthemeritfunction,theglobalconvergenceandfastlocalconvergencerateoftheproposedalgorithmareestablishedundersomereasonableconditions.AnonmonotoniccriterionandthesecondordercorrectionstepareusedtoovercomeMaratoseffectandspeeduptheconvergenceprogressinsomeill-conditionedcases.
简介:准确是判断解题的唯一标准,对填空题来说要求更高、更严格.用笔误等理由来解释错误原因有害无益.必须基本知识熟练,基本方法得心应手,联系与转换自如,辅以认真审题,明确要求,正确表达等,才能提高准确性.复习是更深层次的学习,我们完全可能把学生带到比较完善的境界.例1 若x2-2x-2=(x2-4x+3)0,则x=.错解 原方程即x2-2x-2=1,解出x1=-1,x2=3,∴填-1或3.错因,由于概念不清或者方程的转化不合理,疏忽了x2-4x+3≠0,产生增根.图G-13例2 如图G-13,PA、PB是⊙O的切线A、B是切点,∠APB=78°,点C是⊙O上异于A、B的任意一点,那么∠ACB=.错解
简介:针对具有层次或聚类数据的多水平模型能准确地反映变量间基于层次框架下的关系,并给出不同层次数据的差异性估计及跨级相关估计,为具有层次结构数据的统计建模提供了重要的研究工具,在社会学、心理学、生物医学及经济学领域具有广泛的应用价值。本文简要介绍常用的多水平线性模型和多水平Logistic模型的构建过程,重点介绍其在经济领域中的应用。同时对多水平模型的估计理论、应用软件以及发展展望进行了讨论。