简介:多尺度几何分析中的Contourlet变换可以实现灵活的多分辨、多方向图像表示,但是由于不具有平移不变性,在图像去噪中容易产生伪吉布斯现象,本文应用具有平移不变性且能有效表示图像纹理信息的平稳Contourlet变换,提出了软硬阈值结合的去噪法.试验结果表明该方法有效提高去噪声后图像的PSNR,有效保存图像纹理信息以及更好的视觉效果.
简介:对算子T的Bishop性质(β)进行“局部化”,得到T的新的集值函数A(T),E1(T),E2(T),C1(T),Cx(T),并讨论它们之间的相互关系以及它们与T的谱结构的关系.借助这些新概念我们得到算子的可分解性与次可分解性的新的充要条件和谱特征.
简介:利用对称内积的Schmidt正交化方法证明了各阶主子式不为零对称阵的LDLT分解.引入两个向量组关于弱内积广义正交的概念,并构造了将两组含相同个数向量的线性无关组化为广义正交组的广义Schmidt正交化方法.最后应用这一方法证明了各阶主子式不为零矩阵的LDU分解及一些相关的结果.
简介:基于Schmidt正交化过程获得了一种计算逆矩阵的新方法.对于可逆矩阵A,有Q=MA,其中Q是酉矩阵,M是下三角矩阵.本文直接从Schmidt规范正交化出发,获得下三角矩阵M的计算公式,从而求得逆矩阵A-1=QHM=AHMTM.
简介:运用李群对称方法解决Bretherton方程问题,得到方程的对称约化和群不变解,比如幂级数解,最后得出该问题的守恒率.