简介:一、填空(每题4分,共40分)1一元二次方程的一般形式是(其中)它的求根公式为(其中)2已知关于x的方程x2-px+2p=0的一个根为1,则p=,它的另一个根为3直接写出下列方程的解(1)2(x-1)(x+3)=0(2)3x2+4x-1=04三个连续奇数中,中间一个奇数用2k+1表示,则其余两个奇数为和5某厂今年用电5万度,为节约能源,计划每年要比上一年节约x%,预计明年用电万度,后年用电万度6一元二次方程3x2-5x-1=0的△=,此方程的根的情况是7在实数范围内分解因式:(1)x4-4=.(2)(x4-5x2)2-36=.8若3x2-7x+2=0的两根是x1,x
简介:一、填空题(每小题4分,共32分)1方程3y2=24的根为;方程x-x28=0的根为.2方程13x=1-5x2的两根之和是,两根之积是3当t时,分式t2+2t-3|t|-3的值为零4当p时,分式方程xx-3=p2x-3+2会产生增根5应用求根公式计算方程ax2+bx+c=0(a≠0)的二根x1与x2的差的绝对值可得|x1-x2|=.6代数式1999x-1998与1998-1999x的值相等,则x=.7方程(2x-1)2+2(1-2x)-3=0的解为;方程组x+y=11xy=-12的解为8方程x+5x+10=8的解是二、单项选择题(每小题5分,共30分)9下列结论正确
简介:国家教育部在对初中数学的教育培养上提出:“在初中数学的学习中,发展学生的核心素养是实现素质教育目标的基本环节,深入认识核心素养的教育价值,以此建构全面具体的素养体系,对初中生未来的发展具有深远的影响.”现阶段,将教学内容、教育方式等按照核心素养的培养要求制订,可以为全面深化教育改革、促进教育发展、实现学生的素质教育起到很好的指导作用;数学学科核心素养将教育目标、教育理念更加具体化,使得教师的工作学习也更加具有目标性,进一步促进了教师的专业化发展;数学学科核心素养所包含的内容囊括了初中数学所应掌握的知识点,以及满足学生未来发展所需要的关键技能与必备品质.
简介:一、选择题(每小题4分,共28分)1.已知:如图D-1,BC切⊙O于B,∠AOB=110°,则∠ABC=( )(A)110° (B)55° (C)70° (D)35°图D-2图D-1 2.如图D-2,⊙O是Rt△ABC的内切圆,切点为D、E、F,∠C=90°,AC=6,BC=8,则AF+BE=( )(A)8 (B)6 (C)10 (D)123.两圆的直径分别为10和6,圆心距为4,则两圆的位置关系是( )(A)外离 (B)外切 (C)相交 (D)内切4.如图D-3,弦AB、CD相交于P,PA=3cm,PB=4cm,CD=8cm,且CP<PD,则CP=( )(A)2cm (B)6cm (C)2