简介:本文讨论了2π周期和反周期函数在等距结点上的一类Birkhoff型2-周期三角和仿三角插值问题,给出了此问题有解的充要条件,并构造出插值基。
简介:Hypersubstitutions是印射操作符号到相应arities的术语的地图砰。他们作为使ahyperidentity和归纳的概念精确到M-hyperidentities的一个方法被介绍。每身份作为亢奋的身份在满足的一个变化被称为固体。如果每身份是为子集Mof的M-hyperidentity所有亢奋的替换的集合,变化被称为M固体。在亢奋的替换的单音的标志和一种给定的类型的代数学的所有变化的格子的潜水艇格子之间有一个Galois连接。因此,知道怎么有趣、有用半组或在到M固体变化的相应格子的性质的这个Galois连接下面的亢奋的替换转移的单音的标志性质ofmonoids。在这篇论文,我们学习类型(2,2)的eachhypersubsfitution的顺序,即,周期的subsemigroup的顺序由类型的所有亢奋的替换的单音的标志的thathypersubstitution产生了(2,2)。主要结果是顺序是1,2,3,4或无限。
简介:theAlternatingSegmentCrank-Nicolsonschemeforone-dimensionaldiffusionequationhasbeendevelopedin[1],andtheAlternatingBlockCrank-Nicolsonmethodfortwo-dimensionalproblemin[2].Themethodshavetheadvantagesofparallelcomputing,stabilityandgoodaccuracy.Inthispaperforthetwo-dimensionaldiffusionequation,thenetregionisdividedintobands,aspecialkindofblock.ThismethodiscalledthealternatingBandCrank-Nicolsonmethod.
简介:In[1],ShenGuangyuconstructedseveralclassesofnewsimpleLiealgebrasofcharacteristic2,whicharecalledthevariationsofG2.Inthispaper,theauthorsinvestigatetheirderivationalgebras.ItisshownthatG2anditsvariationsallpossessuniquenondegenerateassociativeforms.TheauthorsalsofindsomenonsingularderivationsofViGfori=3,4,5,6,andtherebyconstructsomeleft-symmetricstructuresonViGfori=3,4,5,6.Someerrorsaboutthevariationsofsi(3,F)in[1]arecorrected.
简介:Theobjectinthispaperistoconsidertheproblemofexistence,uniqueness,explicilrepresentationof(0,2)-interpolationonthezerosof(1-x2)Pn-1(x)/xwhennisodd,wherePn-1denotesLegendrepolynomialofdegreen-1,andtheproblemofconvergenceofinterpolatorypolynomials.
简介:ForquadraticnumberfieldsF=Q(√2pl…pt-1)withprimespj≡1mod8,theauthorsstudytheclassnumberandthenormofthefundamentalunitofF.TheresultsgeneralizenicelywhathasbeenfamiliarforthefieldsQ(√2p)withaprimep≡1mod8,includingdensitystatements.Andtheresultsarestatedintermsofthequadraticformx2+32y2andillustratedintermsofgraphs.
简介:.Thesingle2dilationorthogonalwaveletmultipliersinonedimensionalcaseandsingleA-dilation(whereAisanyexpansivematrixwithintegerentriesand|detA|=2)waveletmultipliersinhighdimensionalcasewerecompletelycharacterizedbytheWutamConsortium(1998)andZ.Y.Li,etal.(2010).Butthereexistnomoreresultsonorthogonalmultivariatewaveletmatrixmultiplierscorrespondingintegerexpansivedilationmatrixwiththeabsolutevalueofdeterminantnot2inL2(R2).Inthispaper,wechoose2I2=(2002)asthedilationmatrixandconsiderthe2I2-dilationorthogonalmultivariatewaveletY={y1,y2,y3},(whichiscalledadyadicbivariatewavelet)multipliers.Wecallthe3×3matrix-valuedfunctionA(s)=[fi,j(s)]3×3,wherefi,jaremeasurablefunctions,adyadicbivariatematrixFourierwaveletmultiplieriftheinverseFouriertransformofA(s)(cy1(s),cy2(s),cy3(s))?=(bg1(s),bg2(s),bg3(s))?isadyadicbivariatewaveletwhenever(y1,y2,y3)isanydyadicbivariatewavelet.Wegivesomeconditionsfordyadicmatrixbivariatewaveletmultipliers.TheresultsextendedthatofZ.Y.LiandX.L.Shi(2011).Asanapplication,weconstructsomeusefuldyadicbivariatewaveletsbyusingdyadicFouriermatrixwaveletmultipliersandusethemtoimagedenoising.