学科分类
/ 25
500 个结果
  • 简介:讨论了n(n≥2)阶方阵A与其伴随矩阵A^*的特征之间的关系,利用A的特征λ0及其代数余子式Aij给出了A^*的特征的表达式.

  • 标签: N阶方阵 伴随矩阵 特征值 代数余子式
  • 简介:

  • 标签:
  • 简介:函数的最大与最小是指函数在整个定义域范围内函数值的最大与最小.我们遇到的求最大和最小的问题.绝大部分可以归结为求函数的最大、最小.这一部分内容是学习函数时需要掌握的重要知识点.本讲将分别讨论一次函数、二次函数、简单的分式函数和无理函数的最问题.

  • 标签: 函数值 最小值 最大值 一次函数 二次函数 最值问题
  • 简介:Inthispaper,theinverseeigenvalueproblemofHermitiangeneralizedanti-Hamiltonianmatricesandrelevantoptimalapproximateproblemareconsidered.Thenecessaryandsufficientconditionsofthesolvabilityforinverseeigenvalueproblemandanexpressionofthegeneralsolutionoftheproblemarederived.Thesolutionoftherelevantoptimalapproximateproblemisgiven.

  • 标签: 矩阵 特征值 厄密共轭
  • 简介:求解矩阵的特征和特征向量在科学工程计算上有着重要应用,本文探讨了求解矩阵特征问题的常用计算方法,主要包括向量迭代法和变换方法两大类,总结了算法的特点,给出了其应用领域。

  • 标签: 矩阵 特征值 幂法 QR方法
  • 简介:本文将推导几个与矩阵的迹有关的特征的不等式作为对特征的界的估计,假定A为n×n复矩阵,其特征均为实数,记为λ(A)不等式1.设A为n×n复矩阵。其特征λ(A)是实数。

  • 标签: 实特征值 矩阵的迹 估计 不等式 复矩阵 实数
  • 简介:定义了上三角等次对角线矩阵和上三角交错次对角线矩阵,讨论了矩阵方程AX-XA=0的对称解与AX+XA=0的反对称解.在此基础上考虑了以下问题的可解性:给定A∈R^n×m,D∈R^m×m,分别求X,Y∈SR^n×m和X,Y∈ASR^m×m,使得XA=YDA.

  • 标签: 对称矩阵 反对称矩阵 广义特征值 反问题
  • 简介:函数是中学数学贯穿始终的重要内容,在中学生的数学学习中占据“半壁江山”.然而,长期以来,不少中学生对于函数学习却感到头痛,对于函数求最问题更是手足无措.以下是几种函数的求法:

  • 标签: 函数最值 求法 中学数学 数学学习 函数学习 最值问题
  • 简介:多变量的函数问题,历来是同学们的一个难点,由于变量多或变量之间的相互约束,往往是顾此失彼,感到难以入手.虽如此,这类问题也有一定的规律可循.下面给出处理这类问题的几种常用的方法,供参考.

  • 标签: 多变量函数 最值问题 高中 数学 解法
  • 简介:函数是中考及各类竞赛中最常出现的题型,这类问题内涵丰富、涉及面广、综合性强、技巧性高.它要求我们准确掌握函数、方程与不等式之间的关系,并灵活运用函数的最解决实际问题,其解决问题的手法主要有转化、配方、数形结合、构建模型等.下面结合具体例题进行研究.

  • 标签: 函数最值 求法 数形结合 构建模型 涉及面 技巧性
  • 简介:记得几年前,江苏南京中考卷曾考查过一类陌生函数“y=2(x+a/x)(x〉0)”,问题是从探索简单的“函数y=x(x〉0)”开始,戈最后得出陌生函数研究的方法.下面我们结合一道“绝对函数”,带大家一起思考陌生函数的研究方法.

  • 标签: 初中 数学教学 教学方法 "绝对值函数"
  • 简介:条件最问题在竞赛中频繁出现,处理方法往往比较复杂。构造向量,利用向量内积进行求解,为函数问题的解决,开辟了一种新的思路和方法。

  • 标签: 构造向量 函数最值 解决
  • 简介:<正>中学数学中的最问题遍及代数、三角、立体几何各科之中,在生产实践中也有广泛的应用.利用中学数学方法解最问题,必须要有坚实的数学基础,具有严谨、全面的分析问题和灵活、综合的解决问题的能力,因此,最问题历来是各类考试的热点.

  • 标签: 最值问题 中学数学 数学基础 换元法 基本不等式 一元二次方程