简介:摘要:本文介绍了关联规则相关的重要技术及其技术发展路线,通过对关联规则相关专利进行分析,梳理出关联规则推荐技术重要的发展及趋势,并结合业内重要申请人的技术演进,对推荐系统的发展历程和呈现形态进行分析,预测未来关联规则推荐系统技术的发展新趋势。
简介:摘要 随着人工智能技术的不断发展,深度学习正在迅速崛起.它可以把复杂的信息结构转换成更加简单易懂的模型,并且可以根据不同的模型结构,快速地提取出更多的信息,这使得它可以更好地帮助人类理解和预测未来的行业,比如图像处理、语音处理和自动驾驶。因此,将深度学习算法应用于推荐系统具有十分重要的意义。
简介:摘要:推荐系统作为信息过载时代的重要工具,一直是研究和创新的热点。本文阐述了推荐系统领域主流算法的研究与创新。首先介绍了传统的协同过滤和内容过滤方法,然后重点关注了基于深度学习的推荐算法,如神经协同过滤(NCF)和深度内容过滤。此外,本文还讨论了推荐系统中的新兴趋势,包括多模态推荐[6]、增强学习[2]和可解释性推荐[7]。研究表明,深度学习在提高推荐性能方面取得了显著进展,但也面临着数据稀疏性和可解释性的挑战。未来的研究方向应聚焦于克服这些挑战,以提高推荐系统的效率和用户体验。
简介:摘要:本文针对在邻居用户协同评分识别数据极端稀疏的大环境下运行传统应用协同推荐过滤度量推荐评分算法可能存在的一些弊端,从如何提高不同邻居之间用户评分识别率的准确性角度出发,对目前传统用户相似性平均度量推荐方法特点进行大胆改进,在此方法基础上创新提出一种基于用户相关性平均值的协同推荐过滤算法。实验分析结果表明,该分析算法不仅能有效增强居民邻居推荐用户在居民推荐结果中的品牌影响力,有效帮助提高邻居推荐结果精度,改善邻居推荐结果质量。
简介:摘要:在大数据时代的发展背景下,科技管理部门已经成为科技情报的重要用户组成,如何对科技情报需求进行快速地了解也成为了当前时代情报服务的重要表现。因此,在科技情报的背景下出现了用户画像的方法,这种方法也为科技情报工作提升了更大的可能性。这种用户画像的方法通过对多种数据的采集与分析,为情报用户打上独特的标签,并用标签来找出用户的特征和需求。文章重点围绕科技情报用户画像标签的生成以及推荐进行探讨。
简介:摘要