摘要
摘要:随着线上阅读新闻方式的兴起,传统的新闻推荐算法存在着特征稀疏、缺少多样性等问题。为解决以上问题,本文提出一种基于Hadoop的融合兴趣模型推荐算法。首先,考虑特征稀疏问题,将特征词扩展得到兴趣扩展模型,其次,考虑新闻热度和阅读时长对相似度的影响,提出了改进的相似度计算方法,得到用户潜在兴趣扩展模型,最后,将两个模型进行混合得到融合兴趣模型,进行新闻推荐。实验结果表明,在hadoop中运行改进后的算法,推荐效果有所提升。
出版日期
2023年01月07日(中国期刊网平台首次上网日期,不代表论文的发表时间)