基于相关均值的协同过滤推荐算法

在线阅读 下载PDF 导出详情
摘要 摘要:本文针对在邻居用户协同评分识别数据极端稀疏的大环境下运行传统应用协同推荐过滤度量推荐评分算法可能存在的一些弊端,从如何提高不同邻居之间用户评分识别率的准确性角度出发,对目前传统用户相似性平均度量推荐方法特点进行大胆改进,在此方法基础上创新提出一种基于用户相关性平均值的协同推荐过滤算法。实验分析结果表明,该分析算法不仅能有效增强居民邻居推荐用户在居民推荐结果中的品牌影响力,有效帮助提高邻居推荐结果精度,改善邻居推荐结果质量。
出处 《科学与技术》 2020年32期
出版日期 2021年04月21日(中国期刊网平台首次上网日期,不代表论文的发表时间)
  • 相关文献