简介:摘要:本研究旨在探讨基于卷积神经网络的人脸识别系统设计策略。人脸识别技术在当代社会中具有重要的应用价值,因此本研究着重于利用卷积神经网络在人脸识别中的优势和特点。通过对相关技术的综述,本文介绍了传统人脸识别方法以及卷积神经网络的基本原理和发展历程。在人脸图像预处理部分,我们讨论了数据采集和清洗、图像增强技术,以及数据集划分与预处理的重要性。接着,我们深入探讨了基于CNN的人脸特征提取,包括卷积层和池化层的作用与选择,深度学习特征提取方法,以及人脸关键点检测与特征表示。在人脸识别网络架构设计方面,我们讨论了网络模型选择与设计,参数优化与调整,以及深度学习模型评估指标。进一步,我们提出了优化与改进策略,包括数据增强与迁移学习,模型优化方法研究,以及多尺度与多模态信息融合。
简介:摘要:针对单通道振动信号输入不能全面表达结构损伤特征信息问题,提出基于多通道一维卷积神经网络的结构损伤识别方法,融合多传感器振动信号信息,直接从原始振动信号中自主提取学习结构损伤特征,实现对结构损伤模式的识别。通过简支梁数值模拟对所提方法进行验证,结果表明:所建立的多通道一维卷积神经网络模型(1D-CNN)能够准确地识别结构的损伤位置和损伤程度,且具有一定的抗噪能力。
简介:摘要目的建立基于卷积神经网络的人工智能烧伤深度识别模型并测试其效果。方法在本诊断试验评价研究中,收集中南大学湘雅医院(下称笔者单位)2010年1月—2019年12月收治的符合入选标准的221例烧伤患者伤后48 h内创面照片484张,采用随机数字编号。采用图像查看软件圈出目标创面,由笔者单位烧伤整形科3名具有5年以上专科工作经验的主治医师判断烧伤深度,用不同颜色标记浅Ⅱ度、深Ⅱ度或Ⅲ度烧伤后,按224×224像素的尺寸切割得到完整大小的图像块5 637张。采用图片生成器将3种深度烧伤图像块均扩充至10 000张后,将每种烧伤深度图像块按7.0∶1.5∶1.5比例分为训练集、验证集和测试集。在Keras 2.2.4 Python 2.8.0版本下,采用卷积神经网络中的残差网络ResNet-50构建人工智能烧伤深度识别模型,输入训练集进行训练,利用验证集对模型进行调整、优化。利用测试集测试构建的模型识别各类烧伤深度的准确率,计算精确率、召回率及F1指数;通过降维工具tSNE将测试结果降维可视化生成二维tSNE云图,观察各类烧伤深度分布情况;根据模型对3种烧伤深度识别的敏感度及特异度,绘制出相应受试者工作特征(ROC)曲线,计算ROC曲线下面积。结果(1)经测试集测试,人工智能烧伤深度识别模型识别浅Ⅱ度、深Ⅱ度、Ⅲ度烧伤的精确率分别为84%(1 095/1 301)、81%(1 215/1 499)、82%(1 395/1 700),召回率分别为73%(1 095/1 500)、81%(1 215/1 500)、93%(1 395/1 500),F1指数分别为0.78、0.81、0.87。(2)tSNE云图显示,人工智能烧伤深度识别模型测试集测试结果中不同烧伤深度之间总体重叠较少,其中浅Ⅱ度与深Ⅱ度、深Ⅱ度与Ⅲ度烧伤之间重叠相对较多,而浅Ⅱ度与Ⅲ度烧伤之间重叠相对较少。(3)人工智能烧伤深度识别模型识别3种烧伤深度的ROC曲线下面积均≥0.94。结论采用ResNet-50网络建立的人工智能烧伤深度识别模型可较准确地识别烧伤患者早期创面照片中烧伤深度,特别是浅Ⅱ度与Ⅲ度烧伤,有望用于临床烧伤深度辅助诊断,提高诊断准确率。
简介:摘要神经网络的快速发展,使得神经网络在很多领域得到应用。许多论著提及将神经网络运用在电力系统谐波检测上。在众多的神经网络方法中,深度学习神经网络(DLNN)脱颖而出。本文意在阐述深度学习神经网络的基本思想和基本算法,以及探讨深度学习神经网络在电力系统谐波检测方面的应用。并在Matlab中对其算法进行验证。对于推广深度学习神经网络在电力系统其他方面的应用具有一定的积极意义。
简介:摘要:随着遥感技术的不断进步和深度学习算法的快速发展,逐渐出现了一系列应用于遥感图像分类的神经网络模型。本文通过对近年来相关文献的综述,总结了各种神经网络模型在遥感图像分类中的应用情况、优缺点及发展趋势,旨在为遥感图像分类领域的研究者提供参考和启示。
简介:摘要目的构建基于卷积神经网络的儿童病毒性脑炎MRI分类与早期诊断模型,探讨其对儿童病毒性脑炎早期诊断、精准治疗和改善患儿预后的价值。材料与方法收集浙江大学医学院附属儿童医院2020至2022年期间颅脑MRI影像数据1077例,其中病毒性脑炎患儿577例,非病毒性脑炎儿童500例。运用卷积神经网络中的Squeeze-and-Excitation Residual Networks(SE-ResNet)模型构建儿童病毒性脑炎MRI分类与早期诊断模型并与Convolutional Block Attention Module Residual Networks(CBAM-ResNet)、Mobile Networks(MobileNet)、Residual Networks(ResNet)、Shuffle Networks(ShuffleNet)模型进行了对比。结果所有模型在训练集上都达到了收敛。SE-ResNet、CBAM-ResNet、MobileNet和ShuffleNet模型在训练集训练100轮后准确率都达到90%以上,而只有CBAM-ResNet模型和本研究选用的SE-ResNet模型在验证集上同样取得了90%以上的准确率。在测试集上,CBAM-ResNet具有最高的准确率73.91%,ResNet具有最高的召回率75.45%,但只有本文所用SE-ResNet模型在准确率和召回率都达到较高水平,并且取得最好的F1得分和曲线下面积(area under the curve, AUC)值:准确率为70.83%,召回率为72.73%,AUC为0.77,F1得分为0.7183。结论运用人工智能技术结合MRI实现儿童病毒性脑炎早期诊断是可行的,本研究为进一步实现全面的儿童脑炎早期诊断、精准治疗和改善脑炎患儿预后提供了理论和应用基础。
简介:摘要:作为一个复杂的神经网络系统,大脑区域和基因协同有效地存储和传递信息。本文提出将协作相关性抽象为脑区基因网络(BG-CN),并提出了基于图卷积神经网络的阿尔兹海默症的早期治疗系统,图卷积神经网络(GCN),用于研究脑区内部和脑区之间的信息传递。该结果可用于阿尔茨海默病(Alzheimer ' s disease, AD)的诊断和病因提取。首先,建立了BG-CN的亲和聚合模型来描述脑区间和脑区内的信息传递。其次,基于亲和聚合模型,设计了具有脑区间卷积和脑区内卷积操作的GCN体系结构。通过在AD神经成像倡议(ADNI)数据集上的充分实验验证,GCN的设计更符合生理机制,提高了可解释性和分类性能。此外,GCN可以识别受损的大脑区域和致病基因,这可能有助于AD的精准医疗和药物设计,并为其他神经系统疾病提供有价值的参考。