简介:摘要:随着科技的发展,我国进入互联网时代,这便使得互联网中的大数据被越来越多的人使用和重视。信息时代,群众可以从互联网中了解到自己想要的讯息,不管所属何种领域,都会挖掘大数据的经济价值以及科技价值。在目前对于分析大数据的方法来说,难度系数较高,是需要研究出一种新的分析方案,帮助挖掘大数据中存在的更多经济价值和科学价值。在当前可以采用无限深度神经网络方法来分析大数据,这种方法可以对大数据中的信息进行综合、整理、分析,为人们筛选出具有价值的信息。在本文中,将会对大数据分析的无限深度神经网络方法进行分析,希望对有需要的人有所帮助。
简介:摘要:针对疫情形势下对营业厅的防疫监控需求,介绍了人工智能在防疫监控中的应用。采用基于深度神经网络(DNN)的人工智能算法作为智能判断手段。重点阐述了设计思路及深度神经网络设计及改进。经过实验测试,所设计的深度神经网络推理成功率达到实用要求,且配合相关监控可满足营业厅防疫要求,对缓解监控人员压力有一定帮助。
简介:摘要:针对疫情形势下对营业厅的防疫监控需求,介绍了人工智能在防疫监控中的应用。采用基于深度神经网络(DNN)的人工智能算法作为智能判断手段。重点阐述了设计思路及深度神经网络设计及改进。经过实验测试,所设计的深度神经网络推理成功率达到实用要求,且配合相关监控可满足营业厅防疫要求,对缓解监控人员压力有一定帮助。
简介:摘要目的探讨卷积神经网络(CNN)在胸部CT肋骨骨折诊断中应用的准确性和可行性。方法收集2017年5月至2019年5月于山西白求恩医院行胸部CT检查的305例肋骨骨折患者的影像资料,经过图像裁剪构建包含5类胸部CT肋骨骨折图像数据集,共7433张图像,作为训练组数据,在深度学习caffe框架下采用Faster R-CNN和Yolov3模型对数据集进行训练和测试。另选取同期肋骨骨折患者20例,裁剪后144幅包含肋骨骨折的CT图像作为验证组,由两位高年资主任医师阅片并确定肋骨骨折类型及部位等作为诊断标准,分别使用Faster R-CNN、Yolov3模型进行验证,同时两位CT医师对验证组图像进行判读。比较3种方法的诊断准确率、诊断一致性及阅片时间。结果验证组144幅CT图像共包含162处骨折,骨折类型包括双侧骨皮质断裂71处、外侧骨皮质断裂38处、内侧骨皮质断裂21处、骨皮质屈曲骨折12处、其他类型骨折20处。Faster R-CNN模型、Yolov3模型、CT医师诊断肋骨骨折的总准确率分别为95.68%(155/162)、83.33%(135/162)、96.30%(156/162),组间比较差异有统计学意义(P<0.001)。Kappa一致性检验显示,Faster R-CNN模型及CT医师的诊断一致性较好(Kappa=0.851,P=0.012)。CT医师、Faster R-CNN模型、Yolov3模型平均每幅图阅片时间分别为(11.57±5.80)s、(0.52±0.15)s、(0.054±0.003)s,组间比较差异有统计学意义(P<0.01)。结论利用深度卷积神经网络识别胸部CT肋骨骨折具有可行性,诊断总准确率与有经验的CT医师相当,而阅片速度更优。
简介:摘要目的探讨基于卷积神经网络(CNN)的人体行为识别在新一代院前急救中的应用。方法从蒙特利尔跌倒视频数据集获取60份视频,按5∶1比例分为模型训练数据和评价测试数据。①数据模型训练:利用奇异值分解对图片进行清晰化处理,通过目标检测与傅里叶变换识别图片中人体的目标边界,将人体曲线描绘出来;利用OpenCv计算机视觉和机器学习软件库人体姿态估计将人体的重要部位(如臀部、膝盖)标出,计算重要部位连线与水平方向的夹角及检测框架的长宽比例,识别人体是否具有异常行为。②评价测试:从模型训练数据集中随机提取6个视频,每个视频抽取10个1帧,将每帧看成一张图片,对每帧进行CNN行为识别,计算正常行为和异常行为的识别率。结果数据模型训练过程中,对每帧进行人为的标签化,训练CNN人体行为识别模型。评测结果显示,正常行为识别率为(90.33±3.03)%,异常行为识别率为(87.74±2.88)%。结论在路人发生危险行为时,通过CNN识别人体行为可判断其是否处于危急状态,并及时发出预警,对院前急救起到至关重要的作用。