学科分类
/ 2
39 个结果
  • 简介:本文研究二维夹层壁板在一侧受超音速气动力的情况下的颤振现象.利用复模态方法和伽辽金方法分析颤振临界马赫数以及夹芯粘性阻尼对颤振的影响.结果发现考虑前四阶模态时,由于一二阶频率重合而使振动能量积聚发生颤振.考虑中间层的粘弹性时,发现随着粘性阻尼的增加,颤振临界马赫数和临界颤振频率均呈现先降低后升高的现象,其原因是粘弹性一方面降低系统固有频率使得临界马赫数降低,另一方面又使能量耗散使得临界马赫数升高,在这两种作用的影响下出现了上述复杂的现象.本文的研究结果有利于颤振抑制时的设计优化.

  • 标签: 夹层壁板 颤振 粘性阻尼 复模态方法
  • 简介:提出了一种快速计算变截面铁木辛柯梁横向振动特性的方法.基于铁木辛柯梁理论建立的变截面梁的横向振动方程,其梁的截面参数如有效剪切面积、密度、弯曲刚度、转动惯量等沿梁轴线连续或非连续变化;首先将变截面梁等效为多段均匀阶梯梁;然后基于相邻两段连接处的位移(位移、转角)和力(弯矩、剪力)连续条件,建立相邻两段模态函数间相互关系,并递推出首段段与末段模态函数相互关系,利用边界条件得到相应特征方程,使用Newton—Raphson方法计算其固有频率;最后针对梁常见边界条件,得到计算变截面铁木辛柯梁横向振动固有频率特征方程的具体形式.用该方法计算-变截面梁在常见边界条件下前三阶固有频率.将计算结果同有限元计算结果进行比较,验证所提方法的有效性.然后与欧拉-伯努利梁计算结果比较,验证了本文方法求解短粗梁固有频率具有更好适用性.

  • 标签: 铁木辛柯梁 变截面 固有频率 弯曲振动
  • 简介:为在外测数据处理中获取更高精度目标部位修正结果,解决已知目标几何尺寸难以精确修正的问题,提出采用捷联惯导系统姿态修正跟踪部位的方法.根据捷联惯导系统遥测四元数信息计算姿态旋转矩阵,利用外测处理中各个参照坐标系的相互关系,修正垂线偏差的影响,实现跟踪部位位置参数保精度修正.通过测试场景仿真计算,与常用速度矢量修正法进行比较、验证,结果表明姿态修正方法精确可行、结果正确,满足数据处理的精度要求和结果评定需要.

  • 标签: 姿态 垂线偏差 跟踪部位修正 坐标系
  • 简介:首先基于Euler-Bernoulli原理,建立了一柔性悬臂梁撞击系统的动力学方程,并给出了模态分析方法;然后在若干基本假定和定义的基础上,利用Karhunnen-Loève展开这一正交分解手段,给出了体现动力系统主要特征的降阶模型,可将系统的本征值进行新的表述;最后将所提方法应用于柔性悬臂梁撞击系统的降阶分析过程中,并给出了相应数值例题.结果表明:本方法可以用少量的模态准确模拟可控系统的动力学特性,可为系统控制研究提供基础.

  • 标签: 降阶方法 撞击 ve 柔性梁 柔性悬臂梁 动力学方程
  • 简介:同时考虑阻尼对响应频率和相位的影响,引入简单的变换,将有阻尼Duffing系统进行重写,得到的新系统在使用MLP方法的参数变换中,待定参数不受初始条件的影响,直接应用MLP方法有效的推导出受简谐激励作用下的含有阻尼的强非线性Duffing系统主共振和1/3亚谐共振的分岔响应方程.首次将MLP方法直接应用于含有阻尼的Duffing系统,极大的推广了MLP方法的应用范围,并对退化为无阻尼系统的结果与现有文献结果相比较,得到满意的结论.

  • 标签: 强非线性 DUFFING系统 MLP方法
  • 简介:对具有重根的广义特征值问题,采用基于快速Fourier变换的方法进行求解,实现重根辨识.文章中采用多次单点初始激励的方式,仿真计算测点上的自由振动响应,对响应进行快速Fourier变换后得到频域数据.而后对频域数据分析,得到固有频率和多组测点振型数据.根据单频和重频处的振型特性,引入振型的余弦相似度为判别参数,辨识重根.数值算例表明,该方法可有效实现重根辨识,同时特征值的计算能达到较高精度.

  • 标签: 广义特征值问题 重根辨识 快速Fourier变换法 固有频率 动力学响应
  • 简介:针对多体系统动力学微分-代数方程求解问题,研究基于Lie群表达的约束稳定方法.首先引入新的Lagrange乘子,结合位移约束、速度级约束和加速度级约束方程,构造了新的Lie群微分-代数方程.然后使用向后差商隐式方法和CG(Crouch-Grossman)方法,对微分–代数方程进行离散求解,得到精确度较高的动力学仿真结果.该方法在精确保持各级约束方程的同时,保持旋转矩阵的正交性,并且使系统总能量误差较小.

  • 标签: 多体系统动力学 微分-代数方程 LIE群 约束稳定
  • 简介:采用CFD/CSD双向流固耦合算法研究平板结构的气动弹性耦合特性.首先,采用CFD/CSD算法计算平板结构的颤振临界速度,并与已有文献中的实验结果进行比较验证.然后,分别对简支和固支边界条件的三维平板结构进行气动弹性特性分析,计算不同约束情况下流场分布的变化和平板结构的位移响应.同时还考虑加肋和结构材质对平板结构气动弹性特性的影响.

  • 标签: 平板结构 亚音速气流 气动弹性耦合特性 CFD CSD算法 时域响应
  • 简介:本文利用基于线性系统稳定性准则的SC混沌比例投影同步方法,提出一种全新的多进制数字信息混沌保密通信方案.将多进制数字信号调制到发送端系统的雅克比矩阵和比例因子中,然后在接收端构造的子系统中判断并解调出数字信号.以传输10进制数字信息为例,利用Lorenz混沌吸引子进行数值模拟仿真,详细分析了通信过程中数字信息的同步性、安全性以及解码精度.仿真结果和数值分析证明了该多进制数字信息混沌调制方案的正确性和有效性.

  • 标签: 保密通信 混沌调制 数字信息 投影同步 雅克比矩阵
  • 简介:针对多体系统动力学数值仿真问题,研究基于Hermite插值的离散变分方法.首先对广义坐标和广义速度进行Hermite插值,结合Gauss数值积分方法,利用Hamilton原理和离散力学变分原理,建立了含已知导数信息和含未知导数信息的Hermite插值离散变分数学模型,求解得到精确度较高的动力学仿真结果.该方法可以在步长较大时精确保持约束方程,并保持系统总能量在一定范围内有界变化,适用于长时间仿真情况.

  • 标签: 多体系统动力学 离散变分方法 HERMITE插值 高斯求积
  • 简介:研究了基于飞行遥测数据,使用环境激励模态辨识方法辨识系统的模态参数时,挑选真实模态的方法.首先,详细介绍了ARMA-NExT环境激励模态辨识方法的理论.接着,给出了模态指示因素,并详细分析了基于稳定图方法、频域和时频分析方法的真实模态筛选的方法.最后通过算例研究了飞行模态筛选的过程.研究发现,通过该方法得出结果与频域和时频分析结果基本一致.

  • 标签: 模态辨识 ARMA-NExT 工作模态 稳定图
  • 简介:在辛体系下利用精细积分对矩形波导纵向排列介质层PGB结构进行分析的基础之上,用响应面方法对滤波器进行了优化设计.采用棱单元对波导的横截面进行离散,然后导向哈密顿体系,运用基于黎卡提微分方程的精细积分求出一段介质层和一段空气层的出口刚度阵,再将两区段合并得到一个周期段的出口刚度阵,从而可对所有周期进行合并以对问题求解.在分析的基础上建立了滤波器的优化设计模型,利用响应面方法将目标函数和约束函数近似显式化,运用二次规划法对优化模型进行求解,得到了滤波性能最优的设计参数.算例表明本文方法是可行有效的.

  • 标签: 波导 PBG结构 滤波器 精细积分 HAMILTON体系 响应面方法
  • 简介:将同伦理论和参数变换技术相结合提出了一种可适用于求解强非线性动力系统响应的新方法,即PE-HAM方法(基于参数展开的同伦分析技术).其主要思想是通过构造合适的同伦映射,将一非线性动力系统的求解问题,转化为一线性微分方程组的求解问题,然后借助于参数展开技术消除长期项,进而得到系统的解析近似解.为了检验所提方法的有效性,研究了具有精确周期的保守Duffing系统的响应,求出了其解析的近似解表达式.在与精确周期的比较中,可以得出:在非线性强度α很大,甚至在α→∞时,近似解的周期与原系统精确周期的误差也只有2.17%.数值模拟结果说明了新方法的有效性.

  • 标签: 系统响应 DUFFING系统 非线性动力系统 线性微分方程组 求解问题 非线性强度
  • 简介:利用改进后的规范形理论研究了四维三阶非线性系统最简规范形的计算.介绍了计算四维非线性系统最简规范形的改进方法,得到计算四维非线性系统最简规范形的通用公式.通过对一个实际振动系统的分析,用数值仿真方法验证了该方法在研究高维非线性系统中的有效性.

  • 标签: 最简规范形 非线性变换 非线性振动 蜂窝夹层板
  • 简介:通过设置涡核模型的角度条件,使涡核模型在极限状态下仍保持收敛,进而改进了利用Biot-Savart定律计算直线涡元对空间任意一点诱导速度的模型;桨叶气动模型采用Weissinger-L升力面理论模拟;自由尾迹的求解采用PIPC松弛迭代算法结合具有二阶精度的CB2D时间步进算法.利用上述模型和算法对某型号旋翼的尾迹进行数值计算,结果显示:利用改进涡核模型计算的桨尖涡径向位移收缩更加明显,这与实际情况更加接近;利用改进涡核模型得到的自由尾迹结果与实验数据吻合的更好.上述结论可以证明,新建立的旋翼自由尾迹模型提高了原有模型的准确性.

  • 标签: 无人机 旋翼 桨尖涡 直线涡元 诱导速度 自由尾迹
  • 简介:考虑执行机构性能、传感器空间指向等复杂约束,研究了空间飞行器姿态机动的路径规划问题.建立了姿态机动路径规划模型,并通过使用微分平坦理论将其映射到平坦输出空间,消除微分方程约束的同时降低设计空间维数;给出了平坦输出参数化描述的伪谱法,并运用共形映射、重心插值等技术改善了微分矩阵的病态特性,提高了路径规划的精度.仿真表明:该方法能够较快规划出满足约束的姿态机动路径,对工程应用具有一定参考价值.

  • 标签: 姿态机动 微分平坦 共形映射 Chebyshev伪谱法
  • 简介:研究了因与外部接触而发生局部非线性的动力学系统.基于NOFRF理论,对系统中出现的各次谐波分量进行研究,推导出了该类系统各自由度各阶谐波分量的表达式.证明了该类动力学系统中各自由度之间高次谐波分量的与原线性系统动柔度矩阵的相关元素成正比关系,并据此提出了一种简洁的局部非线性位置的辨识方法.采用这种方法,可以通过结构体中任意两个部位之间的高次谐波分量的比值关系,经过一次谐波激励而辨识出非线性的具体位置.对一个多自由度系统进行数值仿真,验证了该方法的有效性.

  • 标签: 局部非线性 非线性输出频率响应函数 高次谐波 辨识
  • 简介:工程中存在着大量的具有迟滞非线性恢复力的结构与构件,但迟滞非线性系统既是非线性的,又是非解析的,造成其参数识别十分困难,阻碍了迟滞非线性模型在工程中的应用.本文提出了一种基于小生境遗传算法的迟滞非线性系统参数识别方法,该方法在遗传算法中引入了新的参数——个体活动半径.利用本算法对一木结构剪力墙的BW模型参数进行识别,识别结果误差较小,验证了算法的有效性。

  • 标签: 迟滞非线性系统 参数识别 遗传算法 小生境 工程力学
  • 简介:研究了作大范围旋转运动高度和宽度均沿着梁长度方向变化的锥形悬臂梁动力学问题.采用Bezier插值方法对柔性梁的变形场进行描述,考虑柔性梁的纵向拉伸变形和横向弯曲变形,计人由于横向弯曲变形引起的纵向缩短,即非线性耦合项.运用第二类拉格朗日方程推导出作旋转运动锥形梁的动力学方程,并编制了动力学仿真软件,对作旋转运动锥形梁的频率和动力学响应进行研究.结果表明:不同锥形梁截面的动力学响应和系统频率将有明显差异,因此对实际系统合理建模,将能得到更为精确的结果.

  • 标签: 锥形梁 Bezier插值方法 锥度比 固有频率