简介:在不要求C0-半群为紧半群的前提下.利用函数e^-λt(其中λ〉0是常数)和Monch不动点定理,在更广泛的条件下,得到了Banach空间中一类半线性混合型发展方程初值问题的整体mild解和正mild解,本质上改进和推广了已有相关结果.
简介:本文研究复平面单位圆域内一类非线性二维奇异积分方程的可解性。文中应用泛函分析方法,在某些假设条件下,我们得到了此类非线性方程可解的几个充分条件,同时给出方程的解的表示式。
简介:利用上下解方法和Schuder不动点定理研究了三阶微分方程周期边值问题解的存在性.
简介:本文研究Toeplitz+Hankel线性方程组的预处理迭代解法.我们提出了几个新的预条件子,并分析了预处理矩阵的谱性质,当生成函数在Wiener类中时,预处理矩阵的特征值聚集在1附近.数值实验表明该预处理子比文‘’’中的预处理子更有效.