简介:考虑含分布时滞的退化中立型系统的鲁棒稳定性.利用算子Ω的稳定性和线性矩阵不等式得到一个新的鲁棒稳定性判据,本判据将中立型时滞、时变离散时滞、时变分布时滞和退化中立型系统一起考虑,相比已有文献具有较低的保守性.利用Matlab可以验证本判据的有效性.
简介:本文通过构造Lyapunov函数和利用不等式分析技巧,研究了具有时滞的细胞神经网络的稳定性,给出了与时滞无关的网络渐近稳定的充分判据,该判据可用于时滞细胞神经网络的设计与检验,有重要的理论意义与应用价值。
简介:研究了具时变时滞的分层抑制细胞神经网络.利用不动点定理获得了若干判定该网络存在概周期解的新充分条件,改进和推广了已有文献中的相应结论.
简介:本文研究一类具有状态时滞和输入时滞的时变时滞线性中立型系统.首先,通过选取合适的Lya—punov—Krasovskii泛函。应用LMI方法和Lyapunov—Krasovskii稳定性定理对时滞相关的系统进行稳定性分析,并设计了相应的控制器.改进了时不变时滞线性系统方面的一些结果.最后用实例验证所得到结果.
简介:提出并研究具有反馈控制变量和Holling-Ⅱ类功能性反应的修正Leslie-Gower离散捕食系统的持久性问题,通过运用差分不等式得到了一组保证该系统持久的充分性条件.该结果表明反馈控制变量不会影响系统的持久性从而改进了已有的结果.数值模拟显示了本文结果的可行性.
简介:考虑非自治具有阶段结构种群扩散和收获的时滞生态模型.运用泛函微分方程的单调流理论和凹算子理论,得到唯一正周期解的存在性和全局渐进稳定性.并得到收获阈值.该结论说明只要收获量不超过其阈值,通过扩散则种群可以保持持续生存,而且稳定在一个周期震荡水平.对合理利用生物资源和保持生物多样性具有理论指导意义.