学科分类
/ 23
449 个结果
  • 简介:本文讨论了一类满足Lipschitz条件的非线性系统的镇定与跟踪控制问题.基于非线性状态反馈控制器,利用Lyapunov—Krasovskii泛函和矩阵理论,得到了系统相关全局渐近镇定的新判据,并且保证了输出和状态跟踪控制的误差全局渐近收敛于零.本文推广了文献所得到的结论.因此,本文所研究的模型及所给出的判定条件更具有一般性和实用性.

  • 标签: 非线性时滞系统 渐近镇定 跟踪控制 状态反馈控制 时滞相关
  • 简介:通过使用灰色矩阵覆盖集的分解方法和矩阵范数的性质,构造李雅普诺夫函数,研究了灰色中立随机线性系统的鲁棒稳定性和几乎指数鲁棒稳定性.

  • 标签: 指数鲁棒稳定性 灰色 中立随机系统
  • 简介:本文研究一类形如(r(t)x(n-1)(t))′+f(t,x(t),x(Φ(t,x(t)))=0的具状态的高阶非线性微分方程.按照最终正解的量级给出了它们的分类及存在的充分条件.

  • 标签: 时滞 非线性微分方程 正解 渐近行为 不动点
  • 简介:考虑了一类食饵在斑块环境中扩散具有脉冲和的捕食系统,通过灵活地运用Gaines和Mawhin的连续拓扑度定理,获得了一系列易验证的正周期解存在的充分条件.

  • 标签: 捕食系统 时滞 脉冲 扩散 拓扑度
  • 简介:考虑含分布的退化中立型系统的鲁棒稳定性.利用算子Ω的稳定性和线性矩阵不等式得到一个新的鲁棒稳定性判据,本判据将中立型变离散变分布和退化中立型系统一起考虑,相比已有文献具有较低的保守性.利用Matlab可以验证本判据的有效性.

  • 标签: 退化中立型系统 分布时滞:线性矩阵不等式 积分不等式 稳定性
  • 简介:研究一类偶数阶中立型偏泛函微分方程系统解的振动性,建立了该类系统的解振动的若干充分条件,主要结果通过一些例子加以阐明.

  • 标签: 偏泛函微分方程系统 中立型 时滞 振动性
  • 简介:研究了一类具无穷的中立型周期微分系统周期解的存在性问题.利用指数型二分性及Krasnoselskii不动点定理,建立了保证该系统的周期解的存在性的充分条件.所得结果推广了文[1—7]的有关结果.

  • 标签: 中立型周期微分系统 周期解 存在性
  • 简介:讨论了年龄相关的半线性变种群系统的最优捕获控制问题.根据微积分方程及泛函分析的知识证明了最优捕获控制的存在性,得到了捕获控制为最优的必要条件.

  • 标签: 半线性种群系统 最优捕获 必要条件
  • 简介:本文讨论了一类二阶线性系统在临界情况下的稳定性,给出了保证该系统零解稳定的充分条件,这一结果将拓宽控制论中二维线性变控制系统的研究范围。

  • 标签: 线性的 时变系统 临界情况稳定
  • 简介:变分迭代法被用于解微分方程,通过这种方法我们得到了他们的准确解和数值解。一些例子说明了这种方法的有效性,结果显示这种方法对于解微分方程是一种有力的直接的数学方法。

  • 标签: 娈分迭代 严格变分 时滞微分方程
  • 简介:本文通过构造Lyapunov函数和利用不等式分析技巧,研究了具有时的细胞神经网络的稳定性,给出了与无关的网络渐近稳定的充分判据,该判据可用于细胞神经网络的设计与检验,有重要的理论意义与应用价值。

  • 标签: 细胞神经网络 LYAPUNOV函数 时滞 渐近稳定性
  • 简介:研究了具的分层抑制细胞神经网络.利用不动点定理获得了若干判定该网络存在概周期解的新充分条件,改进和推广了已有文献中的相应结论.

  • 标签: 分层抑制细胞神经网络 概周期解 时变时滞
  • 简介:本文研究一类具有状态和输入时线性中立型系统.首先,通过选取合适的Lya—punov—Krasovskii泛函。应用LMI方法和Lyapunov—Krasovskii稳定性定理对时相关的系统进行稳定性分析,并设计了相应的控制器.改进了不变线性系统方面的一些结果.最后用实例验证所得到结果.

  • 标签: 时滞系统 Lyapunov—Krasovskii泛函鲁棒稳定性线性矩阵不等式(LMI) 反馈控制
  • 简介:提出并研究具有反馈控制变量和Holling-Ⅱ类功能性反应的修正Leslie-Gower离散捕食系统的持久性问题,通过运用差分不等式得到了一组保证该系统持久的充分性条件.该结果表明反馈控制变量不会影响系统的持久性从而改进了已有的结果.数值模拟显示了本文结果的可行性.

  • 标签: 持久性 离散 修正Leslie-Gower 反馈控制 时滞
  • 简介:考虑非自治具有阶段结构种群扩散和收获的生态模型.运用泛函微分方程的单调流理论和凹算子理论,得到唯一正周期解的存在性和全局渐进稳定性.并得到收获阈值.该结论说明只要收获量不超过其阈值,通过扩散则种群可以保持持续生存,而且稳定在一个周期震荡水平.对合理利用生物资源和保持生物多样性具有理论指导意义.

  • 标签: 阶段结构 单调流理论 凹算子理论 BROUWER不动点定理 稳定性
  • 简介:研究具有时的细胞神经网络的稳定性问题,通过构造合适的Lyapunov函数及不等式分析技巧,给出了细胞神经网络全局稳定的新的充分判据,这些结论推广了已知文献中的结果。

  • 标签: 细胞神经网络 Lyapunm 函数 时滞 全局渐近稳定性
  • 简介:研究一类具有脉冲预防接种和的乙肝模型,考虑了疾病的垂直传染,获得了再生数R1,R2,证明了R1<1,系统存在无病周期解,且是全局渐近稳定的,当R2>1,系统的疾病将持续并发展为地方病.

  • 标签: 脉冲接种 垂直传染 时滞 无病周期解 持久性