简介:考虑由磁流体力学方程组控制的二维不可压缩流体的初边值问题,在边界光滑的有界区域中,当(u0,B0)∈((Wm,p(Ω))2×Wm,p(Ω))时,利用Galerkin方法和先验估计,得到了相应的初边值问题存在唯一的弱解(u(.,t),B(.,t))∈((Wm,,(Ω))×Wm,p(Ω)),并证明了弱解对初值(U0,B0)具有连续依赖性.
简介:利用Clark定理,研究了一维p-Laplacian方程边值问题多解的存在性,得到了这类边值问题至少有n对非平凡解的充分条件.
简介:研究从幂结合广群到实的或复的赋准范空间的Cauchy算子方程的Hyers-Ulam-Rassias稳定性.
简介:在不要求C0-半群为紧半群的前提下.利用函数e^-λt(其中λ〉0是常数)和Monch不动点定理,在更广泛的条件下,得到了Banach空间中一类半线性混合型发展方程初值问题的整体mild解和正mild解,本质上改进和推广了已有相关结果.
简介:本文研究复平面单位圆域内一类非线性二维奇异积分方程的可解性。文中应用泛函分析方法,在某些假设条件下,我们得到了此类非线性方程可解的几个充分条件,同时给出方程的解的表示式。
简介:本文讨论矩阵方程在子矩阵约束下的Hermitian解的共轭梯度迭代算法,先转化成两个低阶方程,然后利用共轭梯度思想分别构造出低阶方程的共轭梯度迭代算法,运用算法求出矩阵方程的Hermitian解及最佳逼近,最后给出了数值实例来验证算法的有效性.
简介:作为一个例子拿潜在的第五顺序的MKdV方程介绍一个可能的方法构造非线性的PDE的不变性。基于潜在的第五顺序的MKdV方程并且由解决相应Ricattiform的获得的Backlundtransformation宽松的对,潜在的第五顺序的MKdV方程的不变性被掘出。因此,由就微分并且照过程,潜在的第五顺序的MKdV方程的答案能从一个已知的答案被获得。
简介:在文[1]的基础上,得到了二维广义的Ginzburg-Landau方程的指数吸引子的存在性。
简介:利用上下解方法和Schuder不动点定理研究了三阶微分方程周期边值问题解的存在性.