简介:研究了具有弹性支承轴向受力梁在横向撞击下的动力响应.基于Timoshenko梁理论,综合考虑了梁端支承的抗推刚度、抗转刚度和撞击点处的平衡条件,导出了撞击体系的动力学微分方程,采用积分变换方法求解,得到时域内的各种动力响应.通过对不同支承条件下撞击力、横向位移、弯矩的对比分析,说明了弹性支承对结构动力响应的影响.最后分析了弹性支承下轴压力对结构的影响情况,得出了一些有益的结论.
简介:针对无人动力伞在执行任务时常常在低空、城市上空等复杂气流环境飞行,无人动力伞的响应特性受到飞行速度、航向角和各种风的综合影响,具有的非线性和不确定性.导致事先设计的控制规则不再适合,对此基于PID的控制算法难以达到满意的控制效果.本文提出了一种模糊神经网络控制无人动力伞航向控制策略,利用RBF神经网络所特有的局部逼近能力,对模糊控制规则进行在线推理并获得连续输出,采用GA算法对神经网络参数进行调整来实现对模糊控制器规则库的优化和模糊规则的自动生成.使控制器能够进一步适应无人动力伞实时控制中的时变性和不确定性,保持良好的控制性能;仿真表明算法是可行的.
简介:针对一类混沌系统,研究了参数未知的混沌系统的广义同步.基于lyapunov稳定性定理和自适应控制方法,给出了自适应控制器和参数自适应律的解析表达式.将该方法应用于参数未知的新混沌系统,理论证明了该方法可以使新混沌系统达到渐近的广义同步,并且可以辨识出系统的未知参数.数值模拟进一步证明了该方法的有效性.
简介:运用Bell多项式定理研究了一个(2+1)维AKNS方程的可积性,得到双线性方程、Backlund变换以及运用Backlund变换求得其孤子解,最后运用Bell多项式得出Lax对.
简介:提出力学系统Lagrange函数和第一积分之间存在一种新关联,在此基础上给出变分法逆问题的一种新的直接解法.证明系统Lagrange函数可以由带修正因子的第一积分构成,导出修正因子应满足的偏微分方程,运用此解法构建不同系统的Lagrange函数和函数族,并讨论新解法的特点.
简介:提出了非线性保守系统周期运动的Hermite插值解法.该方法首先将时间转换为周期运动时间,由此系统的微分方程变为适用于Hermite插值的形式.与Qaisi提出的传统幂级数法不同,采用两点Hermite插值函数代替一点幂级数展开,保证了求解的收敛性及精度.使用Hermite插值解法给出了一类非线性振子的近似通解.研究表明,该近似通解不但可用于进一步分析振子的振动特性,且具有较高精度.