学科分类
/ 1
18 个结果
  • 简介:基于有限元基本理论,用ANSYS软件对(P/FGM/P)型的带压电层的功能梯度材料悬臂板的结构进行了模态分析,这里选用SHELL99单元类型.给出(P/FGM/P)型的带压电层FGM悬臂矩形板的振动模态图,得到固有频率,并且对前8阶模态做模态分析,讨论了其对结构的动力学行为的影响.通过模态分析可以得知带压电层FGM悬臂矩形板的模态振型有横向振动,扭转振动,拉伸振动,横向振动以前两阶模态为主,分析结果对系统的结构设计与优化以及振动特性研究提供了有效的依据.

  • 标签: 功能梯度材压电材料 悬臂板 ANSYS 模态分析
  • 简介:本文对长短波相互作用方程作行波变换后转化成第一种椭圆方程,利用第一种椭圆方程的解和Bcklund变换,构造了长短波相互作用方程的无穷序列新解.这里包括了椭圆函数解、双曲函数解、指数函数解和有理函数解.

  • 标签: 第一种椭圆方程 无穷序列新解 Bcklund变换
  • 简介:分析了非线性SanVenant方程的解的特性,并在统一考虑阻力项的影响的基础上,分析了用Pressmainn格式求解非线性SanVenant方程的数值稳定性和收敛性.研究了φ和θ不同取值情况下,差分方程数值解的收敛情况与相对时间步长(Δt)/(Δx)和相对波长L/(Δx)的关系.指出数值解总是存在衰减和弥散现象,在实际模拟过程中,应合理选择φ和θ值,以兼顾数值衰减幅度和模拟速度.

  • 标签: 非线性 稳定性 收敛性
  • 简介:研究了一类抽象耦合非线性梁方程在Hilbert空间中的初值问题.首先运用Galerkin方法对两个方程进行一定的处理,然后证明收敛性,最后证明了上述非线性梁方程的整体弱解的存在性.

  • 标签: 非线性 耦合 梁方程 整体解
  • 简介:运用Galerkin方法讨论了一类具有记忆项的耦合非线性抽象方程的初值问题,根据方程的特点,巧妙地对两个方程进行相加,并结合微积分的性质得到了所要的结果,然后研究收敛性,最后证明了方程整体弱解的存在性.

  • 标签: 记忆项 耦合 非线性 抽象方程组 整体解
  • 简介:在考虑温度对圆柱壳材料性能影响的基础上,建立了圆柱壳在扰动外作用下的几何非线性动力控制方程.并采用伽辽金原理及Melnikov法研究了圆柱壳在热载荷及微扰外作用下的分岔,进一步讨论分析了温度、Batdorf参数等因素对圆柱壳发生混沌运动区域的影响,得出了随温度、Batdorf参数的增大,混沌运动区域将越来越大的结论.

  • 标签: 圆柱壳 热载荷 分岔 混沌
  • 简介:基于改进的KBM法,研究了强非线性多自由自治系统的内共振.求出了极限环的振幅和近似解的表达式.与KBM法比较,该方法的特点是:近似解中包含项中的不再是时间的线性函数,而是时间的非线性函数,它能提高近似解的精度,且应用更广,最后给出一个具体实例,得到了近似解以及相图.和数值结果比较,本文方法具有较高的精度.

  • 标签: 强非线性多自由度自治系统 内共振 近似解
  • 简介:空间绳网的展开效果是空间绳网捕获任务成功的关键所在,而空间绳网展开效果的性能指标和设计参数都数目较多,且单次仿真试验耗时较长,为了避免进行耗时极长的全析因仿真试验,考虑采用正交试验设计方法以减少试验次数.本文针对影响空间绳网展开效果的设计参数开展了灵敏分析,首先提出了空间绳网展开的性能指标和设计参数,然后基于正交试验设计安排仿真试验,获得了正交试验结果,最后综合运用极差法和方差法,对正交试验结果的各项性能指标依次进行了参数灵敏分析.通过本文研究,精简了设计参数和待优化的性能指标的个数,下一步的空间绳网展开参数优化设计打好了基础.

  • 标签: 空间绳网 正交试验 灵敏度分析
  • 简介:在状态空间下,将线性陀螺系统微振动问题导向哈密顿体系,可以得到一加权共轭辛正交关系和模态展开定理.利用这种特点构造了陀螺系统模态摄动计算式与灵敏计算式,从而解决了拉格朗日体系下陀螺系统模态摄动分析与灵敏计算的困难,算显示了文中计算方法的有效性.

  • 标签: 陀螺系统 模态摄动分析 灵敏度计算 惯性动力系统 哈密尔顿体系 微振动
  • 简介:提出了非线性多自由系统的一种新的参数识别方法,研究了二次非线性的2-自由系统.基于保守系统存在能量积分的特点,由系统的运动微分方程导出了哈密尔顿函数,并用它作为参数识别的数学模型.利用系统自由振荡条件下相坐标测量值集合对系统的哈密尔顿函数进行拟合,并用最小二乘法进行参数识别.不管系统非线性的强弱如何,只要系统是保守的,这种方法就有效.

  • 标签: 非线性多自由度系统 参数识别 哈密尔顿函数
  • 简介:动力学和控制系统中往往包含有不确定性参数,为此提出了一种基于随机响应面的不确定性参数灵敏分析方法,以量化参数不确定性对响应变异性的影响.文中首先利用随机响应面建立不确定性参数和响应之间的表达式,然后通过求偏导方式推导参数的灵敏系数,该系数综合反映了参数均值和标准差的影响.最后通过一根包含几何、材料不确定参数的数值梁来验证所提出方法,并与方差分析法结果进行了比较.

  • 标签: 不确定性参数 灵敏度分析 随机响应面 灵敏度系数 方差分析
  • 简介:研究随机扰动下简单电力系统的可靠反馈最大化.应用拟不可积哈密顿系统随机平均法和随机动态规划原理,导出以可靠最大为目标的动态规划方程和以平均首次穿越时间最长目标的动态规划方程.通过分别求解相应的动态规划方程,得到最优控制律,受控与未控系统的条件可靠性函数及平均首次穿越时间.最后应用MonteCarlo模拟验证结果的准确性.

  • 标签: 电力系统 首次穿越 随机平均法 随机动态规划方程 可靠性 寿命
  • 简介:本文以一类单自由双边非对称碰撞振动系统研究对象,采用广义Hertz接触模型表示碰撞过程,考察系统在宽带随机激励下的稳态响应.应用基于广义谐和函数的随机平均法推导出系统在宽带随机外激励下的伊藤随机微分方程,通过求解相应的稳态FPK方程,得到系统关于幅值、能量和位移的稳态概率密度以及位移与速度的联合稳态概率密度.另外,将系统的随机响应近似马尔可夫过程,利用广义胞映射法得到系统的近似稳态响应.最后通过与蒙特卡罗模拟结果的对比,验证了随机平均法和广义胞映射法的有效性.

  • 标签: 碰撞振动系统 广义Hertz接触模型 随机平均法 稳态概率密度 广义胞映射
  • 简介:基于Poincaré映射方法对一类两自由碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.

  • 标签: 碰撞系统 亚谐运动 POINCARÉ映射 稳定性
  • 简介:研究了因与外部接触而发生局部非线性的动力学系统.基于NOFRF理论,对系统中出现的各次谐波分量进行研究,推导出了该类系统各自由各阶谐波分量的表达式.证明了该类动力学系统中各自由之间高次谐波分量的与原线性系统动柔矩阵的相关元素成正比关系,并据此提出了一种简洁的局部非线性位置的辨识方法.采用这种方法,可以通过结构体中任意两个部位之间的高次谐波分量的比值关系,经过一次谐波激励而辨识出非线性的具体位置.对一个多自由系统进行数值仿真,验证了该方法的有效性.

  • 标签: 局部非线性 非线性输出频率响应函数 高次谐波 辨识
  • 简介:研究了一类二自由模型在高速切削过程中的颤振运动.首先建立了二自由切削运动模型,得到了四维的非线性分段方程,然后研究切削力中的动态分量对切削颤振的影响,应用特征值法解析建立了系统发生Hopf分岔的临界条件.结果表明,当分岔参数经过某一临界值时发生Hopf分岔.最后,通过数值方法对该系统进行了数值模拟,从而验证了该临界条件的有效性.

  • 标签: 颤振 高速切削 非光滑系统 HOPF分岔
  • 简介:以一种平面三自由可控挖掘机构,运用拉格朗日方法建立了机构的刚体动力学模型,求解得到了各主动杆的系统广义力;进而针对其半闭环控制系统的控制策略进行研究,基于机构驱动元件.交流控制电机及其驱动器的数学模型,运用模糊算法设计了一种模糊-PID双模控制器并对其进行仿真分析.结果表明:基于模糊算法的控制器在超调量、调节时间、上升时间和抗干扰能力等方面均具有较好性能,满足系统的控制要求.

  • 标签: 多自由度可控机构 挖掘机 动力学 模糊-PID控制
  • 简介:研究了一类具有时滞及非线性特性发生的SIRS传染病模型,首先利用特征值理论分析了无病平衡点和地方病平衡点的局部稳定性;并以时滞τ作为分岔参数,分析了模型的Hopf分岔行为,运用中心流形定理和规范型理论给出了分岔方向及分岔周期解稳定性的计算公式;最后,数值模拟验证了理论分析结果.

  • 标签: 稳定性 时滞 非线性发生率 阶段结构 HOPF分岔