简介:一、启发提问一元二次方程ax2+bx+c=0(a≠0)的求根公式的推导过程中知道实数根的个数是由方程的系数a、b、c(△=b2-4ac)决定时,当△≥0,方程有两个实数根:x1=-b+b2-4ac2a,x2=-b-b2-4ac2a,比较x1和x2式中的结构,你发现了什么?1.分母相同,为2a2.分子-b-b2+4ac与-b+b2-4ac是互为共轭根式,3.计算:x1+x2=-b+b2-4ac2a+-b-b2-4ac2a=,x1·x2=-b+b2-4ac2a·-b-b2-4ac2a=.二、读书自学 P30-P331.如果方程ax2+bx+c=0(a≠0)有两实根是x1和x2则△=b2-4ac≥0
简介:欢迎初中学生对本期数学问题提出解答.解答者注意:1.来稿要用原稿纸抄正写明所在学校和所读年级;2.来稿寄至:海口市海南师范学院数学系蔡亲鹏老师收(邮编571158);3.本期截稿日期2002年6月25日.对于优秀解答者,本刊将公布名单并发给证书.
简介:本文研究一类带有扰动且舍相依索赔的复合二项风险模型,考虑两种类型的索赔:主索赔和副索赔,主索赔以一定的概率引起副索赔且副索赔可能以一定的概率延迟到下一个时间段发生.通过引入辅助模型,利用递归等方法,得到了该模型下的Gerber--Shiu折现罚金函数和破产概率的明确表达式.最后给出了索赔额服从几何分布的数值模拟.
简介:一、填空(每题4分,共40分)1一元二次方程的一般形式是(其中)它的求根公式为(其中)2已知关于x的方程x2-px+2p=0的一个根为1,则p=,它的另一个根为3直接写出下列方程的解(1)2(x-1)(x+3)=0(2)3x2+4x-1=04三个连续奇数中,中间一个奇数用2k+1表示,则其余两个奇数为和5某厂今年用电5万度,为节约能源,计划每年要比上一年节约x%,预计明年用电万度,后年用电万度6一元二次方程3x2-5x-1=0的△=,此方程的根的情况是7在实数范围内分解因式:(1)x4-4=.(2)(x4-5x2)2-36=.8若3x2-7x+2=0的两根是x1,x
简介:应用Eluer求和公式,证明对任意正整数n及实数p>1,1/p+1/q=1,有wn(q)=∑n=1^∝1/m+n(n/m)^1/1