简介:应用权系数的方法及参量化思想,建立一个具有最佳常数因子的、半离散的Hilbert不等式,并考虑了它的引入多参数的最佳推广式,等价式与逆式.
简介:Hilbert不等式倍受数学家的关注,并得到广泛应用.通过建立权系数不等式,得到一个新的逆向Hilbert型不等式,并证明其常数因子为最佳值,同时还考虑其等价形式.
简介:引入独立参量,应用权函数的方法及实分析技巧,建立齐次与非齐次核两类Hilbert型积分不等式的等价联系,定义了等价的Hilbert型积分算子,还考虑了一些特殊核的范数.
简介:通过权函数方法和算子理论,定义了一个Hilbert型积分算子,并给出了它的范数.作为应用,建立了一个Hilbert型积分算子不等式和它的等价形式,并考虑了一些特殊结果.
简介:通过应用权函数的方法及实分析的技巧,建立了全平面上一个新的具有最佳常数因子的-2齐次核为1/(x-y)^2+axy(0〈a〈4)的Hibert型积分不等式及其等价形式,并考虑了其逆向的情形。
简介:在Hilbert空间中满足Lipschitz连续的条件,用预解方程和不动点理论,在算子强单调的条件下,通过Mann迭代和收敛性分析证明了广义混合变分不等式解的问题。