简介:利用NA序列部分和之和的渐近分布和几乎处处中心极限定理,得到一类统计量部分和的渐近分布和几乎处处中心极限定理,将此类统计量的极限性质推广到统计量部分和的极限性质上来.
简介:k均值算法是一个常用的局部搜索算法,它的主要缺陷是容易陷入局部极小,并且该局部极小解与全局最优解往往有很大的偏差.本文提出一个基于K-均值的迭代局部搜索文档聚类算法.该算法以k均值算法所得到的解作为初始解,从该初始解开始作局部搜索,在搜索过程中接受部分劣解.当解无法改进时,算法对所得到的局部极小解做适当强度的扰动后进行下一次的迭代,以跳出局部极小,从而拓展了搜索的范围.实验结果表明该算法对文档数据集聚类的正确性达99%以上.