简介:介绍一些网络聚类算法及其基本原理,简述了其在生物信息学的应用。本文不是网络聚类算法的全面综述,只介绍这些网络聚类算法的基本思路,体会其数学建模的基本思想。
简介:以卷积神经网络为代表的深度学习算法在医学影像分析领域正引起广泛美注,并取得了令人惊叹的进步。为了进一步提高卷积神经网络在计算机辅助筛查肺结节应用的准确率,本文设计了2种改良的深度卷积神经网络,这些改进加快了神经网络的训练速度.有效地防止了算法的过拟合。相比只采用二维卷积核的其他检测模型,该模型能够有效地学习到CT影像三维重建后的图像特征。通过实验,改进的检测模型在LUNAl6数据集上的准确率明显好于其他模型,这种网络结构也可用于医学影像领域中其他三维图像的检测场景。最后,构建了一套适用于远程医疗的“计算机辅助肺癌筛查与诊断系统”,该系统能够自动检测出CT影像中肺结节,并给出结节的良恶性概率评估。通过该系统的应用,可以有效缓解放射科医生超高的劳动强度,提高阀片效率,服务更多患者;减少漏诊和误诊发生的次数,有助于提高肺结节的诊断准确率;从而促进我国肺癌早筛工作的推广。
简介:考虑一个受控制的交通网络,一类用户属于领导者,按照系统最优原则选择出行路径;另一类用户属于跟随者且具有不完全信息,按照Logit型随机用户平衡原则选择出行路径.建立了描述这种Stackelberg博弈下的混合平衡出行行为的变分不等式模型,给出了满足此种混合平衡的交通网络的效率损失上界,结果表明,效率损失上界与被研究的交通网络拓扑结构,交通需求及控制系数有关.
简介:基于等级特征与可变信息板(VMS)研究了交叉巢式Logit(CNL)模型及网络交通流分配。综合幂函数与指数函数表示方法给出新的信息效用衰减因子,结合道路等级特征表示VMS对车流的影响系数及CNL模型的分配系数;给出等级结构道路网络的随机用户均衡条件下的交叉巢式Logit路径选择模型及其等价数学规划,并设计网络流分配算法。通过实例网络的计算与分析,得到一些有意义的结论:等级结构越显著的路网总出行时间费用越低且其分散参数(θ)弹性绝对值越大;对具有较强随机性的实际路网,若增加一定的确定性则节省更多网络总出行时间;道路网络中设置了VMS时总出行时间受分散参数的影响更小。
简介:研究了对于三车道的高速公路,自动驾驶汽车对混合交通流的通行能力及安全性的影响。引入变道欲望值、连续刹车率、空间速度方差和时间速度方差的概念,基于交通流元胞自动机模型,针对手动和自动驾驶2种汽车,建立了单向三车道的加减速和换道规则。选取6个评价参数,针对三车道模型,研究了随着自动驾驶汽车比例的增加,车道平均速度、平均速度的方差、交通密度、连续刹车率以及变道次数的变化情况。实验结果表明:在通行能力方面,当自动驾驶汽车的比例持续增加时,整个车道的平均速度、交通密度显著增加,从而大大提高了此交通网路中的通行能力;同时空间速度方差和时间速度方差会显著减少,说明整个交通流的平稳性增加了。在安全表现方面,当自动驾驶汽车的比例持续增加时,整个交通网路中的连续刹车率、变道次数先逐渐增加,然后逐渐减少,从而很好地刻画了安全性。最后分析了模型的优缺点,并指出了改进的方向。
简介:从模式识别的角度分析了搜索模式下水下运载体的重力匹配问题,利用模式识别神经网络实现重力匹配定位。在重力图匹配时,以惯性导航仪指示位置为中心规划真实位置的网格点搜索范围,从参考重力图上提取相应一系列的重力数据,与对应网格点的位置一起定义成多个模式类,构造相应的模式识别概率神经网络,运用该神经网络将实时重力测量数据识别到某个模式类,对比模式类的定义确定载体位置。在实测重力图上对重力辅助惯性导航系统进行了计算机仿真研究。结果表明,在重力场特征显著区域该重力匹配算法能够有效减小厄特弗斯效应的影响,其导航系统定位误差小于一个重力图网格,匹配率在80%以上,匹配效果优于一般的相关匹配算法。