简介:针对在4级海况下船体大幅度晃动,甚至丢失GPS信号的复杂环境,常规算法会导致姿态测量精度急剧下降的情形,为‘动中通’中的航姿系统设计了一套姿态融合算法。在GPS有效时,卡尔曼滤波的观测量引入双天线GPS输出的航向角,解决航向角观测性弱和估计不准的问题,同时引入互补滤波得到的陀螺修正量,提高了水平姿态角的可观性,融合两种算法提高了解算精度。在GPS无效时,通过互补滤波,抑制陀螺漂移,输出高精度水平姿态角,配合天线所接收信号的强度使‘动中通’正常工作。为验证算法的有效性,进行了动态实验,实验结果表明:该算法在GPS有效的情况下能保证俯仰滚动角(RMSE标准)精度在0.2°以内,航向角精度在0.5°以内,在GPS无效情况下也可使俯仰和滚动角精度长时间维持在0.3°以内,具有一定的工程应用价值。
简介:为了提高标准Cubature卡尔曼滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波cubamre卡尔曼滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔曼滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔曼滤波中的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔曼滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。
简介:多路径误差是北斗导航定位系统高精度动态监测的主要误差源。针对北斗导航定位系统多路径误差的特性,结合广义特征值盲源分离方法的优势,提出一种基于参考信号的广义特征值盲源分离算法来削弱多路径效应的影响。首先将前一天的原始坐标残差序列通过奇异谱分析方法进行去噪,其结果作为初始参考信号;然后将当天的原始坐标残差序列进行经验模式分解方法分解,分解得到的IMF分量作为虚拟观测数据,利用广义特征值盲源分离算法获取当天多路径误差信号;最后,利用仿真数据和连续10天的实际观测数据进行试验分析,结果表明利用该方法建立的多路径误差改正模型能有效地了削弱多路径的影响,北、东、天三个方向精度分别提高了78.8%、35.3%、90.1%。提出的模型在一定程度上解决了固定多路径模型随着时间推移重复性减小且有效性降低的问题。
简介:针对车载单轴旋转激光捷联惯导系统,提出一种抗晃动初始对准方法和零速修正方法,以满足载车快速启动和精确定位的要求。首先采用基于重力信息的粗对准方法得到初始姿态,然后在此基础上,采用惯性凝固坐标系下速度为观测量的卡尔曼滤波方法完成晃动基座精对准。初始对准完成后,采用当地地理坐标系下速度为观测量的卡尔曼滤波方法进行零速修正。数字仿真试验及跑车试验结果表明:在晃动基座上经5min快速初始对准航向角精度与传统方法相当,对准时间仅为传统方法50%;零速修正时间间隔20min,停车修正5s,跑车2h水平定位精度与高程精度相对传统方法提高40%以上。数字仿真试验和系统跑车试验结果验证了所提出算法的可行性和有效性。
简介:在详细分析光纤陀螺零漂的基础上,提出了先用滤波算法对光纤陀螺信号进行预处理,然后采用RBF神经网络对滤波后的信号进行建模的方法.针对光纤陀螺信号特点分别采用FLP算法、小波滤波算法、解相关变步长LMS自适应滤波算法对其进行了预处理,比较三种滤波方法,小波滤波算法效果优于其它两种预处理方法,但针对基于预处理后的陀螺信号采用RBF神经网络进行建模时,小波滤波预处理后的信号在建模精度上却是最差的,而对FLP算法滤波后的信号进行RBF建模,建模精度提高了两个数量级。结果表明:基于FLP算法的RBF神经网络在光纤陀螺中的建模是有效的,可大大提高建模的精度。
简介:惯性导航系统(INS)以其自主的工作能力广泛应用于军事武备的导航、制导与控制系统和国民经济的诸多领域.它的主要缺点是定位误差随其工作时间的增长而增大.对惯导系统的误差进行估计和补偿是在保证性能价格比的前提下,提高惯性导航系统精度的有效途径.目前,对惯导系统的误差修正均采用外信息(如GPS的输出信息)校正,即在INS工作的全部时间内,定期地利用GPS输出的速度和位置信息与INS输出的相应信息的差值作为观测量,对INS误差进行估计和补偿.Kalman滤波的方法广泛地应用于惯导系统的误差修正初始对准.本文研究了当地水平惯导系统的的误差估计和补偿问题.分析结果表明,采用Kalman滤波的方法,可以精确地估计惯导系统的误差(包括陀螺漂移和加速度计零偏),误差估计的精度高,并且估计的方差阵收敛快.
简介:在研究环形激光陀螺的漂移时,许多文献仅采用Allan方差方法进行误差分析。Allan方差没有包含导航用的“零偏不稳定性”项,而实际导航受此项的影响很大,因此只能以经典方差来衡量陀螺的性能,而把Allan方差仅作为一种辅助手段。通常文献采用Allan方差方法分析时,其噪声在频域的表达式(功率谱密度)是建立在频率的不同幂次的基础上,变换成时域表达式得到各项方差。由于此功率谱密度存在不合理,导致诸多矛盾。文中指出这些矛盾,并以实验数据为证,说明这一分析方法不论是逻辑还是在讨论实验数据时都会产生不合理的结果。彻底的解决办法将见续文,它提出用各种阻尼振荡的频带之和作为噪声的功率谱密度。