简介:在这份报纸,我们学习最少的精力的存在包含部分拉普拉斯算符操作员的一个Kirchhoff类型问题的改变症状的解决方案。由使用限制变化方法和量的变丑词根,我们获得一个最少的精力节的答案u为给定的问题的b。而且,我们证明ub严格地比大两次扎根的州的精力。我们也给u是的bb0,在b被认为是一个积极参数的地方。
简介:研究了—(p,q)-Laplacian拟线性椭圆方程组.当连续函数V和W在两种情形下,利用Moser迭代技巧和Ljusternik-Schnirelmann畴数理论,建立了方程组正解的存在性和多重性结果.
简介:Inthispaperwestudytheexistenceoflimitcycleforcubicsystem(E)3,ofKolmogorovtypewithaconicalgebraictrajectoryF2(x,y)=ax2+2bxy+cy2+dx+ey+f=0Ithasbeenprovedinmyformerpapersthat(E)3doesn’thaveanylimitcycleonthewholeplaneIfb2-ac≠0,Nowweareinvestigatingthecasewhereb2-ac=0.Weprovethesufficientandnecessaryformula(2)or(13)witbwhich(E)3musthaveaparabolictrajectoryF2(x,y)=0.Thentherewillnotbeanylimitcycleonthefullplane.Onthebasisofthis,weconclude:ThecubicsystemofKolmogorovtypewithanon-degeneratedquadraticalgebraictrajectoryonthewholeplanehasnolimitcycle.
简介:本文中,我们研究一类由极大Bochner—Riesz算子和Lipschtz函数A生成的多线性算子,获得了它的(Lp,上q)型,而且我们还将证明此算子从Lebesgue空间到Lipschtz空间、从Herz空间到Campanato空间和从Lp空间到Tribel—Lizorkin空间的有界性.
简介:Recently,Cristofaro-GardinerandHutchingsprovedthatthereexistatleasttwoclosedcharacteristicsoneverycompactstar-shapedhypersufaceinR~4.ThenGinzburg,Hein,Hryniewicz,andMacarinigavethisresultasecondproof.Inthispaper,wegiveitathirdproofbyusingindexiterationtheory,resonanceidentitiesofclosedcharacteristicsandaremarkabletheoremofGinzburgetal.
简介:.Thesingle2dilationorthogonalwaveletmultipliersinonedimensionalcaseandsingleA-dilation(whereAisanyexpansivematrixwithintegerentriesand|detA|=2)waveletmultipliersinhighdimensionalcasewerecompletelycharacterizedbytheWutamConsortium(1998)andZ.Y.Li,etal.(2010).Butthereexistnomoreresultsonorthogonalmultivariatewaveletmatrixmultiplierscorrespondingintegerexpansivedilationmatrixwiththeabsolutevalueofdeterminantnot2inL2(R2).Inthispaper,wechoose2I2=(2002)asthedilationmatrixandconsiderthe2I2-dilationorthogonalmultivariatewaveletY={y1,y2,y3},(whichiscalledadyadicbivariatewavelet)multipliers.Wecallthe3×3matrix-valuedfunctionA(s)=[fi,j(s)]3×3,wherefi,jaremeasurablefunctions,adyadicbivariatematrixFourierwaveletmultiplieriftheinverseFouriertransformofA(s)(cy1(s),cy2(s),cy3(s))?=(bg1(s),bg2(s),bg3(s))?isadyadicbivariatewaveletwhenever(y1,y2,y3)isanydyadicbivariatewavelet.Wegivesomeconditionsfordyadicmatrixbivariatewaveletmultipliers.TheresultsextendedthatofZ.Y.LiandX.L.Shi(2011).Asanapplication,weconstructsomeusefuldyadicbivariatewaveletsbyusingdyadicFouriermatrixwaveletmultipliersandusethemtoimagedenoising.