简介:讨论由数域F上的一个n阶方阵A所决定的线性变换DA:Mn(F)→Mn(F),X→AX—XA的不动点。主要结果如下:(1)由DA的全体不动点组成的集合构成矩阵空间Mn(F)的一个子空间,并且这个子空间中的每一个矩阵都是幂零矩阵;(2)如果A是可对角化矩阵,那么由DA的不动点组成的子空间,其维数不超过ψ(n),这里n≥2,并且当n为奇数时,ψ(n)=1/4(n^2—1),当n为偶数时,ψ(n)=1/4n^2;(3)如果m=p1q1+p2q2+…+psqs且p1+q1+p2+q2+…十ps+qs≤n,那么存在一个一个n阶方阵A,使得由DA的不动点组成的子空间,其维数等于m,这里p1,q1,p2,q2,…ps,qs都是正整数;(4)如果DA是矩阵空间Mn(C)上的线性变换,那么DA有非零不动点当且仅当存在A的两个特征值,其差等于1。这里n≥2,并且C表示复数域。
简介:利用Krasnosel’skii不动点定理研究了一类次线性二阶非线性常微分方程三点边值问题正解的存在性问题,得到了正解存在的一个充分条件。